Carboxymethyl cellulose/polyvinylpyrrolidone bio-composite hydrogels enriched with clove bud extracts for enhanced wound healing

被引:2
|
作者
Islam, Md. Monirul [1 ]
Mondal, Ibrahim H. [1 ]
机构
[1] Rajshahi Univ, Dept Appl Chem & Chem Engn, Polymer & Text Res Lab, Rajshahi 6205, Bangladesh
关键词
Carboxymethyl cellulose; Polyvinylpyrrolidone; Clove extract; Antibacterial; Wound healing; ANTIBACTERIAL; CELLULOSE; DELIVERY; FILMS; CMC;
D O I
10.1016/j.arabjc.2024.105945
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In contrast to conventional chemical treatments, medicinal plants are more secure and efficient in treating wounds without the risk of adverse effects. Traditional wound dressings have no antibacterial features, and have an inadequate water vapour transmission rate (WVTR). Clove extracts (CE) were developed in this study to make the dressings more effective in humans. The morphological, physical, mechanical, biological, and antibacterial properties of CMC/PVP biocomposite films were explored with different clove extract (CE) concentrations (2 %, 4 %, and 6 %). Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) investigations demonstrated the structural relationships involving CMC, PVP, and CE in the reinforced samples. The TGA results validate the CMC/PVP/CE bio-composite hydrogel's potential for usage in medicinal applications. The developed bio-composite hydrogels showed > 87 % cell viability against Vero cells, were favourable to cell growth, and had a significant zone of inhibition against S. aureus and E. coli bacteria. CMC/PVP/CE (6 %) bio-composite hydrogel enhanced wound healing in albino mice within 12 days, had a WVTR of 2310 g/m(2)-day and an ESR% of 1712 %. In addition, the results of the histological examination corroborated the observations of faster tissue regeneration, less inflammatory cells, and enhanced vascularity of the surrounding skin. The overall results encourage and show that CMC/PVP/CE (6 %) bio-composite hydrogels have a lot of potential uses in the biomedical field, especially for wound healing.
引用
收藏
页数:11
相关论文
共 31 条
  • [31] Amoxicillin-laded sodium alginate/cellulose nanocrystals/polyvinyl alcohol composite nanonetwork sponges with enhanced wound healing and antibacterial performance
    Qi, Houjuan
    Yang, Lifei
    Ma, Rongxiu
    Xiang, Yushuang
    Dai, Yuxin
    Ren, Juanna
    Xu, Ben Bin
    El-Bahy, Zeinhom M.
    Thabet, Hamdy Khamees
    Huang, Zhanhua
    Ben, Wei
    Yu, Huimin
    Guo, Zhanhu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 280