Enhancing parameter identification for proton exchange membrane fuel cell using modified manta ray foraging optimization

被引:5
作者
Sultan, Hamdy M. [1 ,2 ]
Menesy, Ahmed S. [1 ,3 ]
Korashy, Ahmed [4 ]
Hussien, Abdelazim G. [5 ,6 ]
Kamel, Salah [7 ]
机构
[1] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya 61517, Egypt
[2] Nahda Univ Beni Suef, Fac Engn, Dept Mechatron Engn, Bani Suwayf 62764, Egypt
[3] King Fahd Univ Petr & Minerals, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[4] Univ Jaen, Dept Elect Engn, EPS Linares, Jaen 23700, Spain
[5] Linkoping Univ, Dept Comp & Informat Sci, SE-58183 Linkoping, Sweden
[6] Fayoum Univ, Fac Sci, Faiyum 63514, Egypt
[7] Aswan Univ, Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
关键词
Parameters identification; PEMFC; Optimization; MMRFO; Sensitivity; SLIME-MOLD ALGORITHM; SEARCH ALGORITHM; DESIGN; CRASHWORTHINESS; EXTRACTION;
D O I
10.1016/j.egyr.2024.07.063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, an accurate model of proton exchange membrane fuel cell (PEMFC) for optimal identification of PEMFC parameters has been developed. The optimization methodology is based on the modified version of Manta Ray Foraging Optimization (MMRFO) technique for minimizing the sum of squared errors (SSE) between the Experimentally measured stack voltage and the estimated voltage produced by the optimized model. In the modified methodology, the sine-cosine method has been utilized to enhance the global searching capability in the exploration phase and the local searching capability in the exploitation phase of the MRFO algorithm. In order to validate the effectiveness of the suggested methodology, four different case studies comprising standard benchmark 250 W PEMFC, BCS-500 W PEMFC, SR-12 500 W FC, and 1 kW Temasek stacks were utilized, and the attainments have been compared with the measured polarization characteristics. The attainments have been intensively compared with several metaheuristic algorithms (MA) including Tree growth Algorithm (TGA), Grey wolf optimizer (GWO), Whale optimization algorithm (WOA), Salp swarm algorithm (SSA), and original Manta Ray Foraging Optimization (MRFO), to confirm the superiority of the MMRFO against the compared techniques. The obtained results give a satisfactory agreement between the MMRFO-based model and the experimentally measured data. Finally, the achievements confirmed the effectiveness of the MMRFO over the basic MRFO algorithm and other novel metaheuristic algorithms in identifying PEMFC parameters.
引用
收藏
页码:1987 / 2013
页数:27
相关论文
共 65 条
  • [1] Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer
    Agwa, Ahmed M.
    El-Fergany, Attia A.
    Sarhan, Gamal M.
    [J]. ENERGIES, 2019, 12 (10):
  • [2] A PEMFC model optimization using the enhanced bald eagle algorithm
    Alsaidan, Ibrahim
    Shaheen, Mohamed A. M.
    Hasanien, Hany M.
    Alaraj, Muhannad
    Alnafisah, Abrar S.
    [J]. AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (06)
  • [3] A model predicting transient responses of proton exchange membrane fuel cells
    Amphlett, JC
    Mann, RF
    Peppley, BA
    Roberge, PR
    Rodrigues, A
    [J]. JOURNAL OF POWER SOURCES, 1996, 61 (1-2) : 183 - 188
  • [4] Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment
    Ashraf, Hossam
    Abdellatif, Sameh O.
    Elkholy, Mahmoud M.
    El-Fergany, Attia A.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2022, 258
  • [5] Multi-surrogate-assisted metaheuristics for crashworthiness optimisation
    Aye, Cho Mar
    Pholdee, Nantiwat
    Yildiz, Ali R.
    Bureerat, Sujin
    Sait, Sadiq M.
    [J]. INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2019, 80 (2-4) : 223 - 240
  • [6] A new method for optimal parameters identification of a PEMFC using an improved version of Monarch Butterfly Optimization Algorithm
    Bao, Songjian
    Ebadi, Abdolghaffar
    Toughani, Mohsen
    Dalle, Juhriyansyah
    Maseleno, Andino
    Baharuddin
    Yildizbasi, Abdullah
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) : 17882 - 17892
  • [7] Baumert R.M., 1994, Performance modelling of the Ballard Mark IV solid polymer electrolyte fuel cell
  • [8] Hydrogen Energy Storage: New Techno-Economic Emergence Solution Analysis
    Becherif, M.
    Ramadan, H. S.
    Cabaret, K.
    Picard, F.
    Simoncini, N.
    Bethoux, O.
    [J]. INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY -TMREES15, 2015, 74 : 371 - 380
  • [9] An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function
    Calasan, Martin
    Aleem, Shady H. E. Abdel
    Hasanien, Hany M.
    Alaas, Zuhair M.
    Ali, Ziad M.
    [J]. ENERGY, 2023, 264
  • [10] Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm
    Cao, Yan
    Li, Yiqing
    Zhang, Geng
    Jermsittiparsert, Kittisak
    Razmjooy, Navid
    [J]. ENERGY REPORTS, 2019, 5 : 1616 - 1625