Enhancing parameter identification for proton exchange membrane fuel cell using modified manta ray foraging optimization

被引:9
作者
Sultan, Hamdy M. [1 ,2 ]
Menesy, Ahmed S. [1 ,3 ]
Korashy, Ahmed [4 ]
Hussien, Abdelazim G. [5 ,6 ]
Kamel, Salah [7 ]
机构
[1] Minia Univ, Fac Engn, Elect Engn Dept, Al Minya 61517, Egypt
[2] Nahda Univ Beni Suef, Fac Engn, Dept Mechatron Engn, Bani Suwayf 62764, Egypt
[3] King Fahd Univ Petr & Minerals, Elect Engn Dept, Dhahran 31261, Saudi Arabia
[4] Univ Jaen, Dept Elect Engn, EPS Linares, Jaen 23700, Spain
[5] Linkoping Univ, Dept Comp & Informat Sci, SE-58183 Linkoping, Sweden
[6] Fayoum Univ, Fac Sci, Faiyum 63514, Egypt
[7] Aswan Univ, Fac Engn, Elect Engn Dept, Aswan 81542, Egypt
关键词
Parameters identification; PEMFC; Optimization; MMRFO; Sensitivity; SLIME-MOLD ALGORITHM; SEARCH ALGORITHM; DESIGN; CRASHWORTHINESS; EXTRACTION;
D O I
10.1016/j.egyr.2024.07.063
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, an accurate model of proton exchange membrane fuel cell (PEMFC) for optimal identification of PEMFC parameters has been developed. The optimization methodology is based on the modified version of Manta Ray Foraging Optimization (MMRFO) technique for minimizing the sum of squared errors (SSE) between the Experimentally measured stack voltage and the estimated voltage produced by the optimized model. In the modified methodology, the sine-cosine method has been utilized to enhance the global searching capability in the exploration phase and the local searching capability in the exploitation phase of the MRFO algorithm. In order to validate the effectiveness of the suggested methodology, four different case studies comprising standard benchmark 250 W PEMFC, BCS-500 W PEMFC, SR-12 500 W FC, and 1 kW Temasek stacks were utilized, and the attainments have been compared with the measured polarization characteristics. The attainments have been intensively compared with several metaheuristic algorithms (MA) including Tree growth Algorithm (TGA), Grey wolf optimizer (GWO), Whale optimization algorithm (WOA), Salp swarm algorithm (SSA), and original Manta Ray Foraging Optimization (MRFO), to confirm the superiority of the MMRFO against the compared techniques. The obtained results give a satisfactory agreement between the MMRFO-based model and the experimentally measured data. Finally, the achievements confirmed the effectiveness of the MMRFO over the basic MRFO algorithm and other novel metaheuristic algorithms in identifying PEMFC parameters.
引用
收藏
页码:1987 / 2013
页数:27
相关论文
共 65 条
[1]   Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer [J].
Agwa, Ahmed M. ;
El-Fergany, Attia A. ;
Sarhan, Gamal M. .
ENERGIES, 2019, 12 (10)
[2]   A PEMFC model optimization using the enhanced bald eagle algorithm [J].
Alsaidan, Ibrahim ;
Shaheen, Mohamed A. M. ;
Hasanien, Hany M. ;
Alaraj, Muhannad ;
Alnafisah, Abrar S. .
AIN SHAMS ENGINEERING JOURNAL, 2022, 13 (06)
[3]   A model predicting transient responses of proton exchange membrane fuel cells [J].
Amphlett, JC ;
Mann, RF ;
Peppley, BA ;
Roberge, PR ;
Rodrigues, A .
JOURNAL OF POWER SOURCES, 1996, 61 (1-2) :183-188
[4]   Honey badger optimizer for extracting the ungiven parameters of PEMFC model: Steady-state assessment [J].
Ashraf, Hossam ;
Abdellatif, Sameh O. ;
Elkholy, Mahmoud M. ;
El-Fergany, Attia A. .
ENERGY CONVERSION AND MANAGEMENT, 2022, 258
[5]   Multi-surrogate-assisted metaheuristics for crashworthiness optimisation [J].
Aye, Cho Mar ;
Pholdee, Nantiwat ;
Yildiz, Ali R. ;
Bureerat, Sujin ;
Sait, Sadiq M. .
INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2019, 80 (2-4) :223-240
[6]   A new method for optimal parameters identification of a PEMFC using an improved version of Monarch Butterfly Optimization Algorithm [J].
Bao, Songjian ;
Ebadi, Abdolghaffar ;
Toughani, Mohsen ;
Dalle, Juhriyansyah ;
Maseleno, Andino ;
Baharuddin ;
Yildizbasi, Abdullah .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (35) :17882-17892
[7]  
Baumert RM, 1994, Performance modelling of the Ballard Mark IV solid polymer electrolyte fuel cell
[8]   Hydrogen Energy Storage: New Techno-Economic Emergence Solution Analysis [J].
Becherif, M. ;
Ramadan, H. S. ;
Cabaret, K. ;
Picard, F. ;
Simoncini, N. ;
Bethoux, O. .
INTERNATIONAL CONFERENCE ON TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY -TMREES15, 2015, 74 :371-380
[9]   An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function [J].
Calasan, Martin ;
Aleem, Shady H. E. Abdel ;
Hasanien, Hany M. ;
Alaas, Zuhair M. ;
Ali, Ziad M. .
ENERGY, 2023, 264
[10]   Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm [J].
Cao, Yan ;
Li, Yiqing ;
Zhang, Geng ;
Jermsittiparsert, Kittisak ;
Razmjooy, Navid .
ENERGY REPORTS, 2019, 5 :1616-1625