Bessel-Beam Single-Photon High-Resolution Imaging in Time and Space

被引:0
作者
Qi, Huiyu [1 ]
Li, Zhaohui [1 ]
Wang, Yurong [1 ]
Chen, Xiuliang [1 ]
Pan, Haifeng [1 ]
Wu, E. [1 ]
Wu, Guang [1 ,2 ]
机构
[1] East China Normal Univ, State Key Lab Precis Spect, Shanghai 200241, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
high-resolution imaging; Bessel beam; synchronous laser beam scanning; LIDAR;
D O I
10.3390/photonics11080704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Synchronous laser beam scanning is a common technique used in single-photon imaging where the spatial resolution is primarily determined by the beam divergence angle. In this context, Bessel beams have been investigated as they can overcome the diffraction limit associated with traditional Gaussian beams. Notably, the central spot of a Bessel beam retains its size almost unchanged within a non-diffractive distance. However, the presence of sidelobes in the Bessel beam can negatively impact spatial resolution. To address this challenge, we have developed a single-photon imaging system with high-depth resolution, which allows for the suppression of echo photons from the sidelobe light in the depth image, particularly when their flight time differs from that of the central spot. In our LiDAR setup, we successfully achieved high-resolution scanning imaging with a spatial resolution of approximately 0.5 mm while also demonstrating a high-depth resolution of 12 mm.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Multimodal vehicle detection: fusing 3D-LIDAR and color camera data [J].
Asvadi, Alireza ;
Garrote, Luis ;
Premebida, Cristiano ;
Peixoto, Paulo ;
Nunes, Urbano J. .
PATTERN RECOGNITION LETTERS, 2018, 115 :20-29
[2]   Review of laser speckle-based analysis in medical imaging [J].
Basak, Kausik ;
Manjunatha, M. ;
Dutta, Pranab Kumar .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2012, 50 (06) :547-558
[3]   Image-Based Surface Defect Detection Using Deep Learning: A Review [J].
Bhatt, Prahar M. ;
Malhan, Rishi K. ;
Rajendran, Pradeep ;
Shah, Brual C. ;
Thakar, Shantanu ;
Yoon, Yeo Jung ;
Gupta, Satyandra K. .
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2021, 21 (04)
[4]   LIDAR-camera fusion for road detection using fully convolutional neural networks [J].
Caltagirone, Luca ;
Bellone, Mauro ;
Svensson, Lennart ;
Wande, Mattias .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 111 :125-131
[5]   Ghost Target Detection in 3D Radar Data using Point Cloud based Deep Neural Network [J].
Chamseddine, Mahdi ;
Rambach, Jason ;
Stricker, Didier ;
Wasenmueller, Oliver .
2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, :10398-10403
[6]   Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone [J].
Cole, J. M. ;
Wood, J. C. ;
Lopes, N. C. ;
Poder, K. ;
Abel, R. L. ;
Alatabi, S. ;
Bryant, J. S. J. ;
Jin, A. ;
Kneip, S. ;
Mecseki, K. ;
Symes, D. R. ;
Mangles, S. P. D. ;
Najmudin, Z. .
SCIENTIFIC REPORTS, 2015, 5
[7]  
Fahrbach FO, 2010, NAT PHOTONICS, V4, P780, DOI [10.1038/nphoton.2010.204, 10.1038/NPHOTON.2010.204]
[8]   Mapping River Bathymetry With a Small Footprint Green LiDAR: Applications and Challenges [J].
Kinzel, Paul J. ;
Legleiter, Carl J. ;
Nelson, Jonathan M. .
JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2013, 49 (01) :183-204
[9]   Super-resolution single-photon imaging at 8.2 kilometers [J].
Li, Zheng-Ping ;
Huang, Xin ;
Jiang, Peng-Yu ;
Hong, Yu ;
Yu, Chao ;
Cao, Yuan ;
Zhang, Jun ;
Xu, Feihu ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2020, 28 (03) :4076-4087
[10]   LiDAR-BASED BRIDGE STRUCTURE DEFECT DETECTION [J].
Liu, W. ;
Chen, S. ;
Hauser, E. .
EXPERIMENTAL TECHNIQUES, 2011, 35 (06) :27-34