The Potential of Fiber-Reinforced Concrete to Reduce the Environmental Impact of Concrete Construction

被引:2
|
作者
Alberti, Marcos G. [1 ]
Enfedaque, Alejandro [1 ]
Faria, Duarte M. V. [2 ]
Ruiz, Miguel Fernandez [1 ]
机构
[1] Univ Politecn Madrid, ETSI Caminos Canales & Puertos, C Prof Aranguren 3,Ciudad Univ, Madrid 28040, Spain
[2] MF Ingn Civils SA, CH-1110 Morges, Switzerland
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 15期
关键词
Fiber-Reinforced Concrete; toughness; structural response; redistribution of internal forces; limit analysis; EMISSIONS;
D O I
10.3390/app14156629
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Material optimization was one of the challenges for achieving cost-competitive solutions when concrete was introduced in construction, leading to new structural shapes for both civil works and buildings. As concrete construction became dominant, saving material was given less significance, and the selection of the structural typology was mostly influenced by construction or architectural considerations. Simple and non-time-consuming methods for building thus arose as the dominant criteria for design, and this led to the construction of less efficient structures. Currently, the awareness of the environmental footprint in concrete construction has brought the focus again to the topic of structural efficiency and material optimization. In addition, knowledge of material technology is pushing the use of cements and binders with lower environmental impact. Within this framework, Fiber-Reinforced Concrete (FRC) has been identified as a promising evolution of ordinary concrete construction. In this paper, a discussion is presented on the structural properties required for efficient design, focusing on the toughness and deformation capacity of the material. By means of several examples, the benefits and potential application of limit analysis to design at the Ultimate Limit State with FRC are shown. On this basis, the environmental impact of a tailored mix design and structural typology is investigated for the case of slabs in buildings, showing the significant impact that might be expected (potentially reducing CO2-eq emissions to half or even less in slabs when compared to ordinary solutions).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] FIBER-REINFORCED CONCRETE BEAMS UNDER TORSION
    ELNIEMA, EI
    ACI STRUCTURAL JOURNAL, 1993, 90 (05) : 489 - 495
  • [22] A new test method for fiber-reinforced concrete
    Zollo, RF
    Hays, CD
    Zellers, R
    CEMENT CONCRETE AND AGGREGATES, 1999, 21 (02): : 111 - 116
  • [23] Use of Basalt Fibers in Fiber-Reinforced Concrete
    Pickel, Daniel J.
    West, Jeffrey S.
    Alaskar, Abdulaziz
    ACI MATERIALS JOURNAL, 2018, 115 (06) : 867 - 876
  • [24] Fiber-reinforced concrete: an overview after 30 years of development
    Zollo, RF
    CEMENT & CONCRETE COMPOSITES, 1997, 19 (02) : 107 - 122
  • [25] Flexural Cracks in Fiber-Reinforced Concrete Beams with Fiber-Reinforced Polymer Reinforcing Bars
    Lee, Won K.
    Jansen, Daniel C.
    Berlin, Kenneth B.
    Cohen, Ian E.
    ACI STRUCTURAL JOURNAL, 2010, 107 (03) : 321 - 329
  • [26] New Methodology for Design and Construction of Concrete Members with Complex Stress Fields Using Steel Fiber-Reinforced Concrete
    Liu, Xuejian
    Pareek, Tarun
    Chao, Shih-Ho
    JOURNAL OF STRUCTURAL ENGINEERING, 2016, 142 (11)
  • [27] Shrinkage cracking in polyolefin fiber-reinforced concrete
    Banthia, N
    Yan, C
    ACI MATERIALS JOURNAL, 2000, 97 (04) : 432 - 437
  • [28] Correlating flexural and shear toughness of lightweight fiber-reinforced concrete
    Higashiyama, Hiroshi
    Banthia, Nemkumar
    ACI MATERIALS JOURNAL, 2008, 105 (03) : 251 - 257
  • [29] Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC)
    Bonakdar, A.
    Babbitt, F.
    Mobasher, B.
    CEMENT & CONCRETE COMPOSITES, 2013, 38 : 82 - 91
  • [30] Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete
    Jalasutram, Sruthi
    Sahoo, Dipti Ranjan
    Matsagar, Vasant
    STRUCTURAL CONCRETE, 2017, 18 (02) : 292 - 302