Predicting gross domestic product using the ensemble machine learning method

被引:1
|
作者
Adewale, M. D. [1 ]
Ebem, D. U. [2 ]
Awodele, O. [3 ]
Sambo-Magaji, A. [4 ]
Aggrey, E. M. [1 ]
Okechalu, E. A. [1 ]
Donatus, R. E. [1 ]
Olayanju, K. A. [1 ]
Owolabi, A. F. [1 ]
Oju, J. U. [1 ]
Ubadike, O. C. [1 ]
Otu, G. A. [1 ]
Muhammed, U. I. [1 ]
Danjuma, O. R. [5 ]
Oluyide, O. P. [1 ]
机构
[1] Natl Open Univ Nigeria, Afr Ctr Excellence Technol Enhanced Learning, Lagos, Nigeria
[2] Univ Nigeria, Dept Comp Sci, Nsukka, Nigeria
[3] Babcock Univ, Dept Comp Sci, Ilishan Remo, Ogun, Nigeria
[4] Natl Informat Technol Dev Agcy, Digital Literacy & Capac Dev Dept, Abuja, Nigeria
[5] Obafemi Awolowo Univ, Dept Management & Accounting, Ife, Nigeria
来源
SYSTEMS AND SOFT COMPUTING | 2024年 / 6卷
关键词
GDP; Electricity access; Healthcare Spending; Life Expectancy; Machine Learning; Random Forest Regressor;
D O I
10.1016/j.sasc.2024.200132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The need for more accurate GDP predictions in Nigeria has necessitated the exploration of additional indicators that reflect economic activities and socio-economic factors. This research pioneers a comprehensive approach to predicting Nigeria's Gross Domestic Product (GDP) by integrating a wide array of indicators beyond traditional economic metrics. The primary objective is to enhance the prediction accuracy of Nigeria's GDP using a diverse range of socio-economic indicators. Drawing from data spanning 2000 to 2021, the study incorporates variables like healthcare expenditure, net migration rates, population demographics, life expectancy, access to electricity, and internet usage. Utilising machine learning techniques such as Random Forest Regressor, XGBoost Regressor, and Linear Regression, the study rigorously evaluates the efficacy of these algorithms in forecasting GDP. The analysis reveals that all selected indicators have a strong correlation with GDP. Significantly, the Random Forest Regressor emerges as the most robust model, boasting an R2 score of 0.96 and a Mean Absolute Error (MAE) of 24.29. The study underscores that optimising factors like healthcare, internet access, and electricity availability could serve as pivotal levers for accelerating Nigeria's economic growth.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Predicting attributes based movie success through ensemble machine learning
    Gupta, Vedika
    Jain, Nikita
    Garg, Harshit
    Jhunthra, Srishti
    Mohan, Senthilkumar
    Omar, Abdullah Hisam
    Ahmadian, Ali
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (07) : 9597 - 9626
  • [42] Optimized Ensemble Machine Learning Models for Predicting Phytoplankton Absorption Coefficients
    Alam, Md. Shafiul
    Tiwari, Surya Prakash
    Rahman, Syed Masiur
    IEEE ACCESS, 2024, 12 : 5760 - 5769
  • [43] Predicting attributes based movie success through ensemble machine learning
    Vedika Gupta
    Nikita Jain
    Harshit Garg
    Srishti Jhunthra
    Senthilkumar Mohan
    Abdullah Hisam Omar
    Ali Ahmadian
    Multimedia Tools and Applications, 2023, 82 : 9597 - 9626
  • [44] Assessment of Six Machine Learning Methods for Predicting Gross Primary Productivity in Grassland
    Wang, Hao
    Shao, Wei
    Hu, Yunfeng
    Cao, Wei
    Zhang, Yunzhi
    REMOTE SENSING, 2023, 15 (14)
  • [45] High Performance for Predicting Diabetic Nephropathy Using Stacking Regression of Ensemble Learning Method
    Muflikhah, Lailil
    Nurfansepta, Amira Ghina
    Bachtiar, Fitra Abdurrachman
    Ratnawati, Dian Eka
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2024, 20 (08) : 149 - 164
  • [46] Intelligent Decision Support System for Predicting Student's E-Learning Performance Using Ensemble Machine Learning
    Saleem, Farrukh
    Ullah, Zahid
    Fakieh, Bahjat
    Kateb, Faris
    MATHEMATICS, 2021, 9 (17)
  • [47] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536
  • [48] Predicting stock market direction in South African banking sector using ensemble machine learning techniques
    Mcwera, Angelica
    Mba, Jules Clement
    DATA SCIENCE IN FINANCE AND ECONOMICS, 2023, 3 (04): : 401 - 426
  • [49] Predicting the Splitting Tensile Strength of Recycled Aggregate Concrete Using Individual and Ensemble Machine Learning Approaches
    Zhu, Yongzhong
    Ahmad, Ayaz
    Ahmad, Waqas
    Vatin, Nikolai Ivanovich
    Mohamed, Abdeliazim Mustafa
    Fathi, Dina
    CRYSTALS, 2022, 12 (05)
  • [50] Investigation of Multimodel Ensemble Performance Using Machine Learning Method for Operational Dam Safety
    Basri, Hidayah
    Marufuzzaman, Mohammad
    Sidek, Lariyah Mohd
    Ismail, Norlela
    PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON DAM SAFETY MANAGEMENT AND ENGINEERING, ICDSME 2019, 2020, : 625 - 632