Identification of Kelvin-Helmholtz generated vortices in magnetised fluids

被引:0
作者
Kelly, Harley M. [1 ]
Archer, Martin O. [1 ]
Ma, Xuanye [2 ]
Nykyri, Katariina [2 ,3 ]
Eastwood, Jonathan P. [1 ]
Southwood, David J. [1 ]
机构
[1] Imperial Coll London, Dept Phys, Space Plasma & Climate Community, London, England
[2] Embry Riddle Aeronaut Univ, Phys Sci Dept, Daytona Beach, FL USA
[3] Natl Aeronaut & Space Adm NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
基金
英国科学技术设施理事会; 英国工程与自然科学研究理事会;
关键词
Kelvin-Helmholtz instability; magnetopause; surface wave; vortex identification; simulations; magnetohydrodynamics; KHI; MHD; INTERACTION OFMAGNETIC RECONNECTION; VORTEX IDENTIFICATION; SOLAR-WIND; HYDROMAGNETIC-STABILITY; MAGNETOSPHERIC BOUNDARY; EARTHS MAGNETOSPHERE; INSTABILITY; TRANSPORT; MODES; WAVES;
D O I
10.3389/fspas.2024.1431238
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Kelvin-Helmholtz Instability (KHI), arising from velocity shear across the magnetopause, plays a significant role in the viscous-like transfer of mass, momentum, and energy from the shocked solar wind into the magnetosphere. While the KHI leads to growth of surface waves and vortices, suitable detection methods for these applicable to magnetohydrodynamics (MHD) are currently lacking. A novel method is derived based on the well-established lambda -family of hydrodynamic vortex identification techniques, which define a vortex as a local minimum in an adapted pressure field. The J x B Lorentz force is incorporated into this method by using an effective total pressure in MHD, including both magnetic pressure and a pressure-like part of the magnetic tension derived from a Helmholtz decomposition. The lambda MHD method is shown to comprise of four physical effects: vortical momentum, density gradients, fluid compressibility, and the rotational part of the magnetic tension. A local three-dimensional MHD simulation representative of near-flank magnetopause conditions (plasma beta 's 0.5 - 5 and convective Mach numbers M f similar to 0.4 ) under northward interplanetary magnetic field (IMF) is used to validate lambda MHD . Analysis shows it correlates well with hydrodynamic vortex definitions, though the level of correlation decreases with vortex evolution. Overall, vortical momentum dominates lambda MHD at all times. During the linear growth phase, density gradients act to oppose vortex formation. By the highly nonlinear stage, the formation of small-scale structures leads to a rising importance of the magnetic tension. Compressibility was found to be insignificant throughout. Finally, a demonstration of this method adapted to tetrahedral spacecraft observations is performed.
引用
收藏
页数:23
相关论文
共 50 条
[31]   Kelvin-Helmholtz Instability: Lessons Learned and Ways Forward [J].
Masson, A. ;
Nykyri, K. .
SPACE SCIENCE REVIEWS, 2018, 214 (04)
[32]   The inviscid incompressible limit of Kelvin-Helmholtz instability for plasmas [J].
Briard, A. ;
Ripoll, J. -f. ;
Michael, A. ;
Grea, B. -j. ;
Peyrichon, G. ;
Cosmides, M. ;
El-Rabii, H. ;
Faganello, M. ;
Merkin, V. G. ;
Sorathia, K. A. ;
Ukhorskiy, A. Y. ;
Lyon, J. G. ;
Retino, A. ;
Bouffetier, V. ;
Ceurvorst, L. ;
Sio, H. ;
Hurricane, O. A. ;
Smalyuk, V. A. ;
Casner, A. .
FRONTIERS IN PHYSICS, 2024, 12
[33]   Ubiquity of Kelvin-Helmholtz waves at Earth's magnetopause [J].
Kavosi, Shiva ;
Raeder, Joachim .
NATURE COMMUNICATIONS, 2015, 6
[34]   The Kelvin-Helmholtz Instability From the Perspective of Hybrid Simulations [J].
Delamere, P. A. ;
Barnes, N. P. ;
Ma, X. ;
Johnson, J. R. .
FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2021, 8
[35]   Evolution of the magnetic field generated by the Kelvin-Helmholtz instability [J].
Modestov, M. ;
Bychkov, V. ;
Brodin, G. ;
Marklund, M. ;
Brandenburg, A. .
PHYSICS OF PLASMAS, 2014, 21 (07)
[36]   THE ROLE OF THE MAGNETOSONIC MACH NUMBER ON THE EVOLUTION OF KELVIN-HELMHOLTZ VORTICES [J].
Palermo, F. ;
Faganello, M. ;
Califano, F. ;
Pegoraro, F. ;
Le Contel, O. .
ECLA: EUROPEAN CONFERENCE ON LABORATORY ASTROPHYSICS, 2013, 58 :91-+
[37]   The structure of Kelvin-Helmholtz vortices with super-sonic flow [J].
Kobayashi, Y. ;
Kato, M. ;
Nakamura, K. T. A. ;
Nakamura, T. K. M. ;
Fujimoto, M. .
ADVANCES IN SPACE RESEARCH, 2008, 41 (08) :1325-1330
[38]   Kelvin-Helmholtz Instability Associated With Reconnection and Ultra Low Frequency Waves at the Ground: A Case Study [J].
Kronberg, E. A. ;
Gorman, J. ;
Nykyri, K. ;
Smirnov, A. G. ;
Gjerloev, J. W. ;
Grigorenko, E. E. ;
Kozak, L. V. ;
Ma, X. ;
Trattner, K. J. ;
Friel, M. .
FRONTIERS IN PHYSICS, 2021, 9
[39]   Modeling Kelvin-Helmholtz Instability at the High-Latitude Boundary Layer in a Global Magnetosphere Simulation [J].
Michael, A. T. ;
Sorathia, K. A. ;
Merkin, V. G. ;
Nykyri, K. ;
Burkholder, B. ;
Ma, X. ;
Ukhorskiy, A. Y. ;
Garretson, J. .
GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (19)
[40]   Magnetic signatures of Kelvin-Helmholtz vortices on Saturn's magnetopause: Global survey [J].
Delamere, P. A. ;
Wilson, R. J. ;
Eriksson, S. ;
Bagenal, F. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2013, 118 (01) :393-404