Oxygen-Crosslinker Effect on the Electrochemical Characteristics of Asphalt-Based Hard Carbon Anodes for Sodium-Ion Batteries

被引:4
|
作者
Wang, Laibin [1 ]
Xu, Zikang [2 ]
Lin, Ping [1 ]
Zhong, Yu [1 ]
Wang, Xiuli [1 ]
Yuan, Yongfeng [2 ]
Tu, Jiangping [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Machinery Engn, Hangzhou 310018, Peoples R China
关键词
disordered phase; hard carbon; initial coulombic efficiency; micropore; sodium-ion battery; INSERTION; LITHIUM; STORAGE; MECHANISMS; POTASSIUM; OXIDATION; PITCHES; WASTE;
D O I
10.1002/aenm.202403084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Because direct carbonation of asphalt usually yields ordered graphite structure with unfavorable storage of sodium. Here, the asphalt preoxidation at a specific temperature in the air introduces oxygen-containing groups to connect the unsaturated aliphatic hydrocarbon and aromatic side chains, forming a disordered carbon skeleton to inhibit melting and rearrangement during carbonization. The abundant oxygen-containing groups hinder the growth of the carbon layers during pyrolysis, which promotes the formation of disordered phases and abundant micropores in asphalt-based hard carbons (HCs). The simultaneous increase in initial coulombic efficiency, capacity, and transport behavior of sodium ions in HCs is achieved by adjusting the carbon layer and micropore evolution. The optimized HCs display excellent initial coulombic efficiency of 86.14% with remarkable reversible capacity of 313.83 mAh g(-1) at 0.1 C and high-rate capability with 140 mAh g(-1) at 5 C. Pairing with O3-NaNi1/3Fe1/3Mn1/3O2 cathode, the full cell delivers a higher reversible capacity of 255.7 mAh g(-1) with an initial coulombic efficiency of 83.7% and long cycle life. Based on the microstructure and electrochemical behaviors of asphalt-based HCs, the "adsorption-insertion-pores-filling" sodium storage mechanism is proposed, providing guidelines for designing high-energy-density sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Superresilient Hard Carbon Nanofabrics for Sodium-Ion Batteries
    Ding, Chenfeng
    Huang, Lingbo
    Lan, Jinle
    Yu, Yunhua
    Zhong, Wei-Hong
    Yang, Xiaoping
    SMALL, 2020, 16 (11)
  • [42] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [43] The recent progress of pitch-based carbon anodes in sodium-ion batteries
    Mingchi Jiang
    Ning Sun
    Razium Ali Soomro
    Bin Xu
    Journal of Energy Chemistry, 2021, 55 (04) : 34 - 47
  • [44] The recent progress of pitch-based carbon anodes in sodium-ion batteries
    Jiang, Mingchi
    Sun, Ning
    Soomro, Razium Ali
    Xu, Bin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 55 : 34 - 47
  • [45] Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
    Xu, Yunhua
    Zhu, Yujie
    Liu, Yihang
    Wang, Chunsheng
    ADVANCED ENERGY MATERIALS, 2013, 3 (01) : 128 - 133
  • [46] Exploring the application of carbon xerogels as anodes for sodium-ion batteries
    Cuesta, Nuria
    Camean, Ignacio
    Arenillas, Ana
    Garcia, Ana B.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 308
  • [47] Biomass-derived carbon anodes for sodium-ion batteries
    Huang, Si
    Qiu, Xue-qing
    Wang, Cai-wei
    Zhong, Lei
    Zhang, Zhi-hong
    Yang, Shun-sheng
    Sun, Shi-rong
    Yang, Dong-Jie
    Zhang, Wen-li
    NEW CARBON MATERIALS, 2023, 38 (01) : 40 - 72
  • [48] Novel Q-Carbon Anodes for Sodium-Ion Batteries
    Pethe, Saurabh Prakash
    Sahoo, Siba Sundar
    Ganesan, Arvind
    Meyer III, Harry M.
    Sun, Xiao-Guang
    Narayan, Jagdish
    Paranthaman, Mariappan Parans
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [49] Practical carbon anodes for sodium-ion batteries: progress and challenge
    Yang H.
    Zhang Y.
    Li Q.
    Zhang J.
    Tao Y.
    Yang Q.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2023, 42 (08): : 4029 - 4042
  • [50] Research progress of carbon materials in the anodes of sodium-ion batteries
    Qi, Tianshuang
    Xiong, Kai
    Zhang, Xiong
    JOURNAL OF POWER SOURCES, 2025, 626