Oxygen-Crosslinker Effect on the Electrochemical Characteristics of Asphalt-Based Hard Carbon Anodes for Sodium-Ion Batteries

被引:4
|
作者
Wang, Laibin [1 ]
Xu, Zikang [2 ]
Lin, Ping [1 ]
Zhong, Yu [1 ]
Wang, Xiuli [1 ]
Yuan, Yongfeng [2 ]
Tu, Jiangping [1 ]
机构
[1] Zhejiang Univ, Sch Mat Sci & Engn, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Machinery Engn, Hangzhou 310018, Peoples R China
关键词
disordered phase; hard carbon; initial coulombic efficiency; micropore; sodium-ion battery; INSERTION; LITHIUM; STORAGE; MECHANISMS; POTASSIUM; OXIDATION; PITCHES; WASTE;
D O I
10.1002/aenm.202403084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Because direct carbonation of asphalt usually yields ordered graphite structure with unfavorable storage of sodium. Here, the asphalt preoxidation at a specific temperature in the air introduces oxygen-containing groups to connect the unsaturated aliphatic hydrocarbon and aromatic side chains, forming a disordered carbon skeleton to inhibit melting and rearrangement during carbonization. The abundant oxygen-containing groups hinder the growth of the carbon layers during pyrolysis, which promotes the formation of disordered phases and abundant micropores in asphalt-based hard carbons (HCs). The simultaneous increase in initial coulombic efficiency, capacity, and transport behavior of sodium ions in HCs is achieved by adjusting the carbon layer and micropore evolution. The optimized HCs display excellent initial coulombic efficiency of 86.14% with remarkable reversible capacity of 313.83 mAh g(-1) at 0.1 C and high-rate capability with 140 mAh g(-1) at 5 C. Pairing with O3-NaNi1/3Fe1/3Mn1/3O2 cathode, the full cell delivers a higher reversible capacity of 255.7 mAh g(-1) with an initial coulombic efficiency of 83.7% and long cycle life. Based on the microstructure and electrochemical behaviors of asphalt-based HCs, the "adsorption-insertion-pores-filling" sodium storage mechanism is proposed, providing guidelines for designing high-energy-density sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] High-Capacity Hard Carbon Pyrolyzed from Subbituminous Coal as Anode for Sodium-Ion Batteries
    Lu, Haiyan
    Sun, Shaofa
    Xiao, Lifen
    Qian, Jiangfeng
    Ai, Xinping
    Yang, Hanxi
    Lu, An-Hui
    Cao, Yuliang
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (01) : 729 - 735
  • [42] Spray-coated Hard Carbon Composite Anodes for Sodium-Ion Insertion
    Palanisamy, Krishnaveni
    Daboss, Sven
    Schaefer, David
    Rohnke, Marcus
    Derr, Laurin
    Lang, Marcel
    Schuster, Rolf
    Kranz, Christine
    BATTERIES & SUPERCAPS, 2024, 7 (01)
  • [43] Hard Carbons as Anodes in Sodium-Ion Batteries: Sodium Storage Mechanism and Optimization Strategies
    Liu, Liyang
    Tian, Ye
    Abdussalam, Abubakar
    Gilani, Muhammad Rehan Hasan Shah
    Zhang, Wei
    Xu, Guobao
    MOLECULES, 2022, 27 (19):
  • [44] Revitalizing sodium-ion batteries via controllable microstructures and advanced electrolytes for hard carbon
    Wang, Feng
    Jiang, Zhenming
    Zhang, Yanyan
    Zhang, Yanlei
    Li, Jidao
    Wang, Huibo
    Jiang, Yinzhu
    Xing, Guichuan
    Liu, Hongchao
    Tang, Yuxin
    ESCIENCE, 2024, 4 (03):
  • [45] A review on anodes for sodium-ion batteries: carbon-coated SnS and beyond
    Le, Xiao-hui
    Wu, Di
    Zeng, Han-qiu
    Wang, Chen-si
    Sheng, Xin-rui
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2025, 33 (03) : 303 - 324
  • [46] Investigations into Improved Electrochemical Performance of Sn Doped Hard Carbons as Negatives for Sodium-Ion Batteries
    Tripathi, Abhinav
    Murugesan, Chinnasamy
    Naden, Aaron
    Curran, Peter
    Kavanagh, Chris M.
    Condliffe, James M.
    Armstrong, A. Robert
    Irvine, John T. S.
    BATTERIES & SUPERCAPS, 2023, 6 (11)
  • [47] Recent Advances in Carbon Anodes for Sodium-Ion Batteries
    Zhang, Tengfei
    Li, Chen
    Wang, Fan
    Noori, Abolhassan
    Mousavi, Mir F.
    Xia, Xinhui
    Zhang, Yongqi
    CHEMICAL RECORD, 2022, 22 (10)
  • [48] Deciphering Electrolyte Dominated Na+ Storage Mechanisms in Hard Carbon Anodes for Sodium-Ion Batteries
    Liu, Guiyu
    Wang, Zhiqiang
    Yuan, Huimin
    Yan, Chunliu
    Hao, Rui
    Zhang, Fangchang
    Luo, Wen
    Wang, Hongzhi
    Cao, Yulin
    Gu, Shuai
    Zeng, Chun
    Li, Yingzhi
    Wang, Zhenyu
    Qin, Ning
    Luo, Guangfu
    Lu, Zhouguang
    ADVANCED SCIENCE, 2023, 10 (36)
  • [49] Carbon and Carbon Hybrid Materials as Anodes for Sodium-Ion Batteries
    Zhong, Xiongwu
    Wu, Ying
    Zeng, Sifan
    Yu, Yan
    CHEMISTRY-AN ASIAN JOURNAL, 2018, 13 (10) : 1248 - 1265
  • [50] Dual-Function Presodiation with Sodium Diphenyl Ketone towards Ultra-stable Hard Carbon Anodes for Sodium-Ion Batteries
    Fang, Hengyi
    Gao, Suning
    Ren, Meng
    Huang, Yaohui
    Cheng, Fangyi
    Chen, Jun
    Li, Fujun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (02)