Can Machine Learning Personalize Cardiovascular Therapy in Sepsis?

被引:0
作者
Catling, Finneas J. R. [1 ,2 ]
Nagendran, Myura [2 ,3 ]
Festor, Paul [3 ,4 ]
Bien, Zuzanna [5 ]
Harris, Steve [6 ,7 ]
Faisal, A. Aldo [3 ,4 ,8 ,9 ]
Gordon, Anthony C. [2 ]
Komorowski, Matthieu [2 ]
机构
[1] UCL, Inst Healthcare Engn, London, England
[2] Imperial Coll London, Div Anaesthet Pain Med & Intens Care, London, England
[3] Imperial Coll London, UKRI Ctr Doctoral Training AI Healthcare, London, England
[4] Imperial Coll London, Dept Comp, London, England
[5] Kings Coll London, Sch Life Course & Populat Sci, London, England
[6] Univ Coll London Hosp, Dept Crit Care, London, England
[7] UCL, Inst Hlth Informat, London, England
[8] Univ Bayreuth, Inst Artificial & Human Intelligence, Bayreuth, Germany
[9] Imperial Coll London, Dept Bioengn, London, England
基金
英国惠康基金; 英国科研创新办公室; 英国工程与自然科学研究理事会;
关键词
artificial intelligence; clinical; decision support systems; precision medicine; resuscitation; sepsis; INTERNATIONAL CONSENSUS DEFINITIONS; EARLY WARNING SYSTEM; SEPTIC SHOCK; OUTCOMES;
D O I
10.1097/CCE.0000000000001087
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Large randomized trials in sepsis have generally failed to find effective novel treatments. This is increasingly attributed to patient heterogeneity, including heterogeneous cardiovascular changes in septic shock. We discuss the potential for machine learning systems to personalize cardiovascular resuscitation in sepsis. While the literature is replete with proofs of concept, the technological readiness of current systems is low, with a paucity of clinical trials and proven patient benefit. Systems may be vulnerable to confounding and poor generalization to new patient populations or contemporary patterns of care. Typical electronic health records do not capture rich enough data, at sufficient temporal resolution, to produce systems that make actionable treatment suggestions. To resolve these issues, we recommend a simultaneous focus on technical challenges and removing barriers to translation. This will involve improving data quality, adopting causally grounded models, prioritizing safety assessment and integration into healthcare workflows, conducting randomized clinical trials and aligning with regulatory requirements.
引用
收藏
页数:7
相关论文
共 66 条
[1]  
Aboodi M. S., 2019, AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, V199
[2]   Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis [J].
Adams, Roy ;
Henry, Katharine E. ;
Sridharan, Anirudh ;
Soleimani, Hossein ;
Zhan, Andong ;
Rawat, Nishi ;
Johnson, Lauren ;
Hager, David N. ;
Cosgrove, Sara E. ;
Markowski, Andrew ;
Klein, Eili Y. ;
Chen, Edward S. ;
Saheed, Mustapha O. ;
Henley, Maureen ;
Miranda, Sheila ;
Houston, Katrina ;
Linton, Robert C. ;
Ahluwalia, Anushree R. ;
Wu, Albert W. ;
Saria, Suchi .
NATURE MEDICINE, 2022, 28 (07) :1455-+
[3]  
[Anonymous], GoodSAM Medical
[4]   Transcriptomic Signatures in Sepsis and a Differential Response to Steroids From the VANISH Randomized Trial [J].
Antcliffe, David B. ;
Burnham, Katie L. ;
Al-Beidh, Farah ;
Santhakumaran, Shalini ;
Brett, Stephen J. ;
Hinds, Charles J. ;
Ashby, Deborah ;
Knight, Julian C. ;
Gordon, Anthony C. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (08) :980-986
[5]   Inverse reinforcement learning in contextual MDPs [J].
Belogolovsky, Stav ;
Korsunsky, Philip ;
Mannor, Shie ;
Tessler, Chen ;
Zahavy, Tom .
MACHINE LEARNING, 2021, 110 (09) :2295-2334
[6]   Development and validation of novel sepsis subphenotypes using trajectories of vital signs [J].
Bhavani, Sivasubramanium, V ;
Semler, Matthew ;
Qian, Edward T. ;
Verhoef, Philip A. ;
Robichaux, Chad ;
Churpek, Matthew M. ;
Coopersmith, Craig M. .
INTENSIVE CARE MEDICINE, 2022, 48 (11) :1582-1592
[7]   Superhuman performance on sepsis MIMIC-III data by distributional reinforcement learning [J].
Boeck, Markus ;
Malle, Julien ;
Pasterk, Daniel ;
Kukina, Hrvoje ;
Hasani, Ramin ;
Heitzinger, Clemens .
PLOS ONE, 2022, 17 (11)
[8]   Development of a Reinforcement Learning Algorithm to Optimize Corticosteroid Therapy in Critically Ill Patients with Sepsis [J].
Bologheanu, Razvan ;
Kapral, Lorenz ;
Laxar, Daniel ;
Maleczek, Mathias ;
Dibiasi, Christoph ;
Zeiner, Sebastian ;
Agibetov, Asan ;
Ercole, Ari ;
Thoral, Patrick ;
Elbers, Paul ;
Heitzinger, Clemens ;
Kimberger, Oliver .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
[9]  
Boussina A, 2024, NPJ DIGIT MED, V7, DOI 10.1038/s41746-023-00986-6
[10]  
Catling FJR, 2023, Data-driven decision support for individualised cardiovascular resuscitation in sepsis: a scoping review and primer for clinicians, P2023