The effect of Ti/Al ratios on the evolution of precipitates and their effects on tensile properties for Fe3.75Cr1.25NiAl0.6-xTix high entropy alloys

被引:0
作者
Ji, Yu [1 ]
Zhang, Hongwei [1 ]
Pang, Jingyu [1 ]
Xing, Zhenqiang [1 ]
Zhang, Long [1 ]
Zhu, Zhengwang [2 ]
Wang, Aimin [1 ]
Zhang, Haifeng [2 ]
机构
[1] Chinese Acad Sci, Shi Changxu Innovat Ctr Adv Mat, Inst Met Res, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Sch Met, Shenyang 110819, Peoples R China
关键词
HEAs; Microstructure evolution and tensile properties; B2 and L2(1) nanoparticles; MECHANICAL-PROPERTIES; AL ADDITION; MICROSTRUCTURE; PHASE; BEHAVIOR;
D O I
10.1016/j.intermet.2024.108505
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The work developed a series of novel Co-free high-entropy alloys (HEAs), i.e. Fe3.75Cr1.25NiAl0.6-xTix (x = 0, 0.15, 0.30 and 0.40, molar ratio) HEAs abbreviated as Ti0, Ti0.15, Ti0.30 and Ti0.40, respectively. The effects of Ti/Al ratio (Al partially replaced by Ti) on the microstructure and tensile properties were investigated systematically. The Ti0 HEA contains the FCC phase in dendritic regions and the BCC and B2 phases (BCC/B2) in interdendritic regions. Moreover, the spherical ordered B2 nanoparticles are embedded in the BCC matrix. With increasing the Ti/Al ratio from 0 to 1/3, there is a phase transition from B2-NiAl to L2(1)-Ni2AlTi. Furthermore, the morphology of the nanoparticles evolves from spherical to cuboidal. With further increasing the Ti/Al ratio from 1/3 to 1 and 2, the morphology of nanoparticles evolves from cuboidal back to spherical. In addition, the Ti0.40 HEA has sigma phases besides FCC, BCC, and L2(1) phases. The analysis of tensile properties shows that properly adjusting Ti/Al ratios sharply improves the plasticity and slightly improves the ultimate strength, but only causes a limited decrease in the yield strength. Specifically, the Ti0.15 HEA has a superior combination of strength and plasticity, exhibiting a yield strength of 819 MPa, an ultimate strength of 1113 MPa, and a fracture strain of 13.4 %. The SRO, the solid-solution strengthening, the phase transformation, and the shape of nanoparticles were discussed in detail, which reveals the origins of the excellent tensile properties. In addition, the excessive addition of Ti forms the sigma phase, leading to a serious brittleness. These findings are believed to promote the development of low-cost HEAs with BCC/L21 for practical applications.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
[Anonymous], 2019, J. Alloys Compd., V805, P585
[2]   Microstructure and electrochemical properties of high entropy alloys - a comparison with type-304 stainless steel [J].
Chen, YY ;
Duval, T ;
Hung, UD ;
Yeh, JW ;
Shih, HC .
CORROSION SCIENCE, 2005, 47 (09) :2257-2279
[3]   DUCTILIZATION OF NI3AL BY MACROALLOYING WITH PD [J].
CHIBA, A ;
HANADA, S ;
WATANABE, S .
ACTA METALLURGICA ET MATERIALIA, 1991, 39 (08) :1799-1805
[4]   Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy [J].
Choudhuri, D. ;
Alam, T. ;
Borkar, T. ;
Gwalani, B. ;
Mantri, A. S. ;
Srinivasan, S. G. ;
Gibson, M. A. ;
Banerjee, R. .
SCRIPTA MATERIALIA, 2015, 100 :36-39
[5]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[6]   Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys [J].
Ding, Jun ;
Yu, Qin ;
Asta, Mark ;
Ritchie, Robert O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (36) :8919-8924
[7]   Tuning element distribution, structure and properties by composition in high-entropy alloys [J].
Ding, Qingqing ;
Zhang, Yin ;
Chen, Xiao ;
Fu, Xiaoqian ;
Chen, Dengke ;
Chen, Sijing ;
Gu, Lin ;
Wei, Fei ;
Bei, Hongbin ;
Gao, Yanfei ;
Wen, Minru ;
Li, Jixue ;
Zhang, Ze ;
Zhu, Ting ;
Ritchie, Robert O. ;
Yu, Qian .
NATURE, 2019, 574 (7777) :223-+
[8]   Phase stability and transformation in a light-weight high-entropy alloy [J].
Feng, Rui ;
Gao, Michael C. ;
Zhang, Chuan ;
Guo, Wei ;
Poplawsky, Jonathan D. ;
Zhang, Fan ;
Hawk, Jeffrey A. ;
Neuefeind, Joerg C. ;
Ren, Yang ;
Liaw, Peter K. .
ACTA MATERIALIA, 2018, 146 :280-293
[9]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[10]   Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys [J].
He, J. Y. ;
Wang, H. ;
Wu, Y. ;
Liu, X. J. ;
Mao, H. H. ;
Nieh, T. G. ;
Lu, Z. P. .
INTERMETALLICS, 2016, 79 :41-52