High-Dimensional Overdispersed Generalized Factor Model With Application to Single-Cell Sequencing Data Analysis
被引:0
作者:
Nie, Jinyu
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Nie, Jinyu
[1
,2
]
Qin, Zhilong
论文数: 0引用数: 0
h-index: 0
机构:
Southwestern Univ Finance & Econ, Inst Western China Econ Res, Chengdu, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Qin, Zhilong
[3
]
Liu, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Univ, Sch Math, Chengdu, Peoples R ChinaSouthwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
Liu, Wei
[4
]
机构:
[1] Southwestern Univ Finance & Econ, Ctr Stat Res, Chengdu, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Peoples R China
[3] Southwestern Univ Finance & Econ, Inst Western China Econ Res, Chengdu, Peoples R China
[4] Sichuan Univ, Sch Math, Chengdu, Peoples R China
The current high-dimensional linear factor models fail to account for the different types of variables, while high-dimensional nonlinear factor models often overlook the overdispersion present in mixed-type data. However, overdispersion is prevalent in practical applications, particularly in fields like biomedical and genomics studies. To address this practical demand, we propose an overdispersed generalized factor model (OverGFM) for performing high-dimensional nonlinear factor analysis on overdispersed mixed-type data. Our approach incorporates an additional error term to capture the overdispersion that cannot be accounted for by factors alone. However, this introduces significant computational challenges due to the involvement of two high-dimensional latent random matrices in the nonlinear model. To overcome these challenges, we propose a novel variational EM algorithm that integrates Laplace and Taylor approximations. This algorithm provides iterative explicit solutions for the complex variational parameters and is proven to possess excellent convergence properties. We also develop a criterion based on the singular value ratio to determine the optimal number of factors. Numerical results demonstrate the effectiveness of this criterion. Through comprehensive simulation studies, we show that OverGFM outperforms state-of-the-art methods in terms of estimation accuracy and computational efficiency. Furthermore, we demonstrate the practical merit of our method through its application to two datasets from genomics. To facilitate its usage, we have integrated the implementation of OverGFM into the R package GFM.
机构:
Southwestern Univ Finance & Econ, Sch Stat, Chengdu, Sichuan, Peoples R China
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaSouthwestern Univ Finance & Econ, Sch Stat, Chengdu, Sichuan, Peoples R China
Chan, Ngai Hang
Lu, Ye
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaSouthwestern Univ Finance & Econ, Sch Stat, Chengdu, Sichuan, Peoples R China
Lu, Ye
Yau, Chun Yip
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Stat, Hong Kong, Hong Kong, Peoples R ChinaSouthwestern Univ Finance & Econ, Sch Stat, Chengdu, Sichuan, Peoples R China
机构:
NHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
Boston Univ, Dept Cardiol, Boston, MA 02215 USANHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Yin, Xiaoyan
Levy, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
NHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
NHLBI, Div Intramural Res, Populat Sci Branch, Boston, MA USANHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Levy, Daniel
Willinger, Christine
论文数: 0引用数: 0
h-index: 0
机构:
NHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
NHLBI, Div Intramural Res, Populat Sci Branch, Boston, MA USANHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Willinger, Christine
Adourian, Aram
论文数: 0引用数: 0
h-index: 0
机构:
BG Med Inc, Waltham, MA USANHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Adourian, Aram
Larson, Martin G.
论文数: 0引用数: 0
h-index: 0
机构:
NHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
Boston Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02215 USA
Boston Univ, Dept Math & Stat, Boston, MA 02215 USANHLBI, Framingham Heart Study, 73 Mt Wayte Ave,Suite 2, Framingham, MA 01702 USA
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R China
Shen, Keren
Yao, Jianfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R China
Yao, Jianfeng
Li, Wai Keung
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R ChinaUniv Hong Kong, Dept Stat & Actuarial Sci, Pokfulam, Hong Kong, Peoples R China
机构:
Univ Bordeaux IV, CNRS, UMR 5113, Lab GREThA, F-33608 Pessac, FranceUniv Bordeaux IV, CNRS, UMR 5113, Lab GREThA, F-33608 Pessac, France
Berge, Laurent
Bouveyron, Charles
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 01, EA 4543, Lab SAMM, F-75013 Paris, FranceUniv Bordeaux IV, CNRS, UMR 5113, Lab GREThA, F-33608 Pessac, France
Bouveyron, Charles
Girard, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Rhone Alpes, Team Mistis, F-38330 Montbonnot St Martin, Saint Ismier, France
LJK, F-38330 Montbonnot St Martin, Saint Ismier, FranceUniv Bordeaux IV, CNRS, UMR 5113, Lab GREThA, F-33608 Pessac, France