Stability estimates for radial basis function methods applied to linear scalar conservation laws

被引:2
|
作者
Tominec, Igor [1 ]
Nazarov, Murtazo [2 ]
Larsson, Elisabeth [2 ]
机构
[1] Stockholm Univ, Dept Math, Div Computat Math, Stockholm, Sweden
[2] Uppsala Univ, Dept Informat Technol, Div Sci Comp, Uppsala, Sweden
关键词
Radial basis function; Stability; Hyperbolic PDE; Kansa; RBF-PUM; RBF-FD; RBF-FD DISCRETIZATIONS;
D O I
10.1016/j.amc.2024.129020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive stability estimates for three commonly used radial basis function (RBF) methods to solve hyperbolic time-dependent PDEs: the RBF generated finite difference (RBF-FD) method, the RBF partition of unity method (RBF-PUM) and Kansa's (global) RBF method. We give the estimates in the discrete l(2)-norm 2-norm intrinsic to each of the three methods. The results show that Kansa's method and RBF-PUM can be l(2)-stable 2-stable in time under a sufficiently large oversampling of the discretized system of equations. The RBF-FD method in addition requires stabilization of the spurious jump terms due to the discontinuous RBF-FD cardinal basis functions. Numerical experiments show an agreement with our theoretical observations.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Stability estimates for non-local scalar conservation laws
    Chiarello, Felisia Angela
    Goatin, Paola
    Rossi, Elena
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 : 668 - 687
  • [2] Analysis of a class of spectral volume methods for linear scalar hyperbolic conservation laws
    Lu, Jianfang
    Jiang, Yan
    Shu, Chi-Wang
    Zhang, Mengping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [3] Discontinuous Galerkin methods for nonlinear scalar hyperbolic conservation laws: divided difference estimates and accuracy enhancement
    Meng, Xiong
    Ryan, Jennifer K.
    NUMERISCHE MATHEMATIK, 2017, 136 (01) : 27 - 73
  • [4] Towards stable radial basis function methods for linear advection problems
    Glaubitz, Jan
    Le Meledo, Elise
    Oeffner, Philipp
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 85 : 84 - 97
  • [5] Stability of sticky particle dynamics and related scalar conservation laws
    Moutsinga, Octave
    IMA JOURNAL OF APPLIED MATHEMATICS, 2009, 74 (03) : 458 - 467
  • [6] Preconditioning for Radial Basis Function Partition of Unity Methods
    Heryudono, Alfa
    Larsson, Elisabeth
    Ramage, Alison
    von Sydow, Lina
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 67 (03) : 1089 - 1109
  • [7] On the Consistency of Runge-Kutta Methods Up to Order Three Applied to the Optimal Control of Scalar Conservation Laws
    Hintermueller, Michael
    Strogies, Nikolai
    NUMERICAL ANALYSIS AND OPTIMIZATION, 2018, 235 : 119 - 154
  • [8] Nonlinear stability of stationary discrete shocks for nonconvex scalar conservation laws
    Liu, HL
    Wang, JH
    MATHEMATICS OF COMPUTATION, 1996, 65 (215) : 1137 - 1153
  • [9] STABILITY ANALYSIS OF EXPLICIT ENTROPY VISCOSITY METHODS FOR NON-LINEAR SCALAR CONSERVATION EQUATIONS
    Bonito, Andrea
    Guermond, Jean-Luc
    Popov, Bojan
    MATHEMATICS OF COMPUTATION, 2014, 83 (287) : 1039 - 1062
  • [10] The L1-stability of boundary layers for scalar viscous conservation laws
    Freistühler H.
    Serre D.
    Journal of Dynamics and Differential Equations, 2001, 13 (4) : 745 - 755