Machine learning and balanced techniques for diabetes prediction

被引:0
作者
Narvaez, Liliana [1 ]
Reategui, Ruth [1 ]
机构
[1] Univ Tecn Particular Loja, Loja, Ecuador
来源
2023 FOURTH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND SOFTWARE TECHNOLOGIES, ICI2ST 2023 | 2023年
关键词
diabetes; machine learning; imbalance data;
D O I
10.1109/ICI2ST62251.2023.00017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Diabetes mellitus is a metabolic disorder characterized by high blood glucose levels, resultingfrom defects in insulin secretion, insulin action, or both. This study applied some supervised learning such Support Vector Machine, Random Forest and Gradient Boosting to predict diabetes mellitus. Additionally, a comparative analysis of two balanced data techniques, namely SMOTE and Random UnderSampler, is presented. Results show that Gradient Boosting yielded the most favorable outcomes in terms of accuracy and precision when utilizing SIIOTE technique. Furthermore, the inclusion of insulin variable and the exclusion of Skinlhickwess and BloodPressure variables led to improve the results.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [41] Prediction of Diabetes at Early Stage using Interpretable Machine Learning
    Islam, Mohammad Sajidul
    Alam, Md Minul
    Ahamed, Afsana
    Meerza, Syed Imran Ali
    SOUTHEASTCON 2023, 2023, : 261 - 265
  • [42] Stroke Risk Prediction with Machine Learning Techniques
    Dritsas, Elias
    Trigka, Maria
    SENSORS, 2022, 22 (13)
  • [43] Prediction of hypercholesterolemia using machine learning techniques
    Pooyan Moradifar
    Mohammad Meskarpour Amiri
    Journal of Diabetes & Metabolic Disorders, 2023, 22 : 255 - 265
  • [44] Machine learning techniques for protein function prediction
    Bonetta, Rosalin
    Valentino, Gianluca
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2020, 88 (03) : 397 - 413
  • [45] Prediction of hypercholesterolemia using machine learning techniques
    Moradifar, Pooyan
    Amiri, Mohammad Meskarpour
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2023, 22 (01) : 255 - 265
  • [46] Machine learning in precision diabetes care and cardiovascular risk prediction
    Oikonomou, Evangelos K.
    Khera, Rohan
    CARDIOVASCULAR DIABETOLOGY, 2023, 22 (01)
  • [47] Machine learning techniques for dental disease prediction
    Iffat Firozy Rimi
    Md. Ariful Islam Arif
    Sharmin Akter
    Md. Riazur Rahman
    A. H. M. Saiful Islam
    Md. Tarek Habib
    Iran Journal of Computer Science, 2022, 5 (3) : 187 - 195
  • [48] Predicting Diabetes Mellitus With Machine Learning Techniques
    Zou, Quan
    Qu, Kaiyang
    Luo, Yamei
    Yin, Dehui
    Ju, Ying
    Tang, Hua
    FRONTIERS IN GENETICS, 2018, 9
  • [49] An effective correlation-based data modeling framework for automatic diabetes prediction using machine and deep learning techniques
    Patro, Kiran Kumar
    Allam, Jaya Prakash
    Sanapala, Umamaheswararao
    Marpu, Chaitanya Kumar
    Samee, Nagwan Abdel
    Alabdulhafith, Maali
    Plawiak, Pawel
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [50] Predicting Suicidal Behaviors in Individuals With Diabetes Using Machine Learning Techniques
    Mamun, Mohammed A.
    Al-Mamun, Firoj
    Hasan, Md Emran
    Roy, Nitai
    ALmerab, Moneerah Mohammad
    Muhit, Mohammad
    Moonajilin, Mst. Sabrina
    PERSPECTIVES IN PSYCHIATRIC CARE, 2024, 2024