Pyramid Cascaded Convolutional Neural Network with Graph Convolution for Hyperspectral Image Classification

被引:0
|
作者
Pan, Haizhu [1 ,2 ]
Yan, Hui [1 ]
Ge, Haimiao [1 ,2 ]
Wang, Liguo [3 ]
Shi, Cuiping [4 ]
机构
[1] Qiqihar Univ, Coll Comp & Control Engn, Qiqihar 161000, Peoples R China
[2] Qiqihar Univ, Heilongjiang Key Lab Big Data Network Secur Detect, Qiqihar 161000, Peoples R China
[3] Dalian Nationalities Univ, Coll Informat & Commun Engn, Dalian 116000, Peoples R China
[4] Qiqihar Univ, Coll Telecommun & Elect Engn, Qiqihar 161000, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral image classification; multiscale features extraction; convolutional neural network; graph convolutional network; mutual-cooperative attention mechanism; FUSION NETWORK; ATTENTION;
D O I
10.3390/rs16162942
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Convolutional neural networks (CNNs) and graph convolutional networks (GCNs) have made considerable advances in hyperspectral image (HSI) classification. However, most CNN-based methods learn features at a single-scale in HSI data, which may be insufficient for multi-scale feature extraction in complex data scenes. To learn the relations among samples in non-grid data, GCNs are employed and combined with CNNs to process HSIs. Nevertheless, most methods based on CNN-GCN may overlook the integration of pixel-wise spectral signatures. In this paper, we propose a pyramid cascaded convolutional neural network with graph convolution (PCCGC) for hyperspectral image classification. It mainly comprises CNN-based and GCN-based subnetworks. Specifically, in the CNN-based subnetwork, a pyramid residual cascaded module and a pyramid convolution cascaded module are employed to extract multiscale spectral and spatial features separately, which can enhance the robustness of the proposed model. Furthermore, an adaptive feature-weighted fusion strategy is utilized to adaptively fuse multiscale spectral and spatial features. In the GCN-based subnetwork, a band selection network (BSNet) is used to learn the spectral signatures in the HSI using nonlinear inter-band dependencies. Then, the spectral-enhanced GCN module is utilized to extract and enhance the important features in the spectral matrix. Subsequently, a mutual-cooperative attention mechanism is constructed to align the spectral signatures between BSNet-based matrix with the spectral-enhanced GCN-based matrix for spectral signature integration. Abundant experiments performed on four widely used real HSI datasets show that our model achieves higher classification accuracy than the fourteen other comparative methods, which shows the superior classification performance of PCCGC over the state-of-the-art methods.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Graph Neural Network via Edge Convolution for Hyperspectral Image Classification
    Hu, Haojie
    Yao, Minli
    He, Fang
    Zhang, Fenggan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [2] Hyperspectral Image Classification Based on Fusion of Convolutional Neural Network and Graph Network
    Gao, Luyao
    Xiao, Shulin
    Hu, Changhong
    Yan, Yang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [3] Global and pyramid convolutional neural network with hybrid attention mechanism for hyperspectral image classification
    Wu, Linfeng
    Wang, Huajun
    GEOCARTO INTERNATIONAL, 2023, 38 (01)
  • [4] Graph-in-Graph Convolutional Network for Hyperspectral Image Classification
    Jia S.
    Jiang S.
    Zhang S.
    Xu M.
    Jia X.
    IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (01) : 1157 - 1171
  • [5] Broad Graph Convolutional Neural Network and Its Application in Hyperspectral Image Classification
    Wang, Haoyu
    Cheng, Yuhu
    Chen, C. L. Philip
    Wang, Xuesong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (02): : 610 - 616
  • [6] A Dual-Branch Fusion of a Graph Convolutional Network and a Convolutional Neural Network for Hyperspectral Image Classification
    Yang, Pan
    Zhang, Xinxin
    SENSORS, 2024, 24 (14)
  • [7] Hyperspectral Image Classification With Contrastive Graph Convolutional Network
    Yu, Wentao
    Wan, Sheng
    Li, Guangyu
    Yang, Jian
    Gong, Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Semisupervised graph convolutional network for hyperspectral image classification
    Liu, Bing
    Gao, Kuiliang
    Yu, Anzhu
    Guo, Wenyue
    Wang, Ruirui
    Zuo, Xibing
    JOURNAL OF APPLIED REMOTE SENSING, 2020, 14 (02):
  • [9] Fuzzy graph convolutional network for hyperspectral image classification
    Xu, Jindong
    Li, Kang
    Li, Ziyi
    Chong, Qianpeng
    Xing, Haihua
    Xing, Qianguo
    Ni, Mengying
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [10] Multiscale graph convolution residual network for hyperspectral image classification
    Li, Ao
    Sun, Yuegong
    Feng, Cong
    Cheng, Yuan
    Xi, Liang
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)