Structural Evolution of Trimethylacetonitrile under Pressure: A Combined X-ray Diffraction and Computational Study

被引:1
作者
Blake, Rebecca M. [1 ]
Stapleton, Nicholas D. [1 ]
Jones, Isabelle M. [1 ]
Brookes, James R. [1 ]
Turner, Gemma F. [1 ]
Bird, Stephanie A. [2 ]
Riboldi-Tunnicliffe, Alan [2 ]
Williamson, Rachel M. [2 ]
Young, Rosemary [2 ]
Maynard-Casely, Helen E. [3 ]
Spagnoli, Dino [1 ]
Moggach, Stephen A. [1 ]
机构
[1] Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia
[2] Australian Synchrotron, Melbourne, Vic 3168, Australia
[3] Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia
来源
ACS EARTH AND SPACE CHEMISTRY | 2024年 / 8卷 / 09期
基金
澳大利亚研究理事会;
关键词
Titan; high pressure; X-ray crystallography; small molecule; density functional theory; TOTAL-ENERGY CALCULATIONS; SINGLE-CRYSTAL; MECHANICAL-PROPERTIES; PHASE-TRANSITION; COHESIVE ENERGY; BUTYL CYANIDE; ACETONITRILE; TEMPERATURE; SPECTRA; DENSITY;
D O I
10.1021/acsearthspacechem.4c00202
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Three high-pressure phases of trimethylacetonitrile, a compound of potential interest in the context of Titan's atmospheric chemistry, have been investigated using single-crystal X-ray diffraction, periodic density functional theory, and CrystalExplorer intermolecular energy calculations. A disordered tetragonal P4/nmm phase is formed between 0.07 and 0.29 GPa (denoted hp-I). Compression to 0.43 GPa forms an ordered orthorhombic Pnma phase (hp-II), which transforms to a monoclinic P2(1)/m phase (hp-III) at 1.52 GPa. The hp-III phase persists to at least 3.34 GPa. Phase transitions are driven by densification of the crystal and facilitated by rearrangement of the supramolecular hydrogen-bonding network, with 180 degrees reorientation of half the molecules. Compression of each phase is associated with slight shortening of the intermolecular hydrogen bonds, with gradual destabilization of the cohesive energy to 3.34 GPa.
引用
收藏
页码:1693 / 1699
页数:7
相关论文
共 58 条
[1]   The structure of methanol at 5.09 GPa: the fortuitous formation of a new high-pressure phase [J].
Aldum, J. Collen ;
Jones, Isabelle ;
McGonigal, Paul R. ;
Spagnoli, Dino ;
Stapleton, Nicholas D. ;
Turner, Gemma F. ;
Moggach, Stephen A. .
CRYSTENGCOMM, 2022, 24 (40) :7103-7108
[2]  
[Anonymous], 2010, J. Chem. Phys., V132, P154104, DOI DOI 10.1063/1.3382344
[3]  
[Anonymous], 2009, Gaussian09
[4]   ALPHA-ACETONITRILE AT 215-K [J].
BARROW, MJ .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1981, 37 (DEC) :2239-2242
[5]   High-pressure single-crystal diffraction at the Australian Synchrotron [J].
Boer, Stephanie A. ;
Price, Jason R. ;
Riboldi-Tunnicliffe, Alan ;
Williamson, Rachel ;
Rostan, Robert ;
Summers, Aston ;
Turner, Gemma F. ;
Jones, Isabelle ;
Bond, Charles S. ;
Vrielink, Alice ;
Marshall, Andrew C. ;
Hitchings, John ;
Moggach, Stephen A. .
JOURNAL OF SYNCHROTRON RADIATION, 2023, 30 :841-846
[6]   Pancake-bonding of semiquinone radicals under variable temperature and pressure conditions [J].
Bogdanov, Nikita E. ;
Milasinovi, Valentina ;
Zakharov, Boris A. ;
Boldyreva, Elena, V ;
Molcanov, Kresimir .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2020, 76 :285-291
[7]   Titan in a Test Tube: Organic Co-crystals and Implications for Titan Mineralogy [J].
Cable, Morgan L. ;
Runcevski, Tomce ;
Maynard-Casely, Helen E. ;
Vu, Tuan H. ;
Hodyss, Robert .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (15) :3050-3059
[8]   A generally applicable atomic-charge dependent London dispersion correction [J].
Caldeweyher, Eike ;
Ehlert, Sebastian ;
Hansen, Andreas ;
Neugebauer, Hagen ;
Spicher, Sebastian ;
Bannwarth, Christoph ;
Grimme, Stefan .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (15)
[9]   CRYSTAL STRUCTURE OF CYANOACETAMIDE [J].
CHIEH, PC ;
TROTTER, J .
JOURNAL OF THE CHEMICAL SOCIETY A -INORGANIC PHYSICAL THEORETICAL, 1970, (02) :184-&
[10]   Ab initio investigation of structure and cohesive energy of crystalline urea [J].
Civalleri, B. ;
Doll, K. ;
Zicovich-Wilson, C. M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (01) :26-33