Privacy-preserving edge federated learning for intelligent mobile-health systems

被引:1
|
作者
Aminifar, Amin [1 ]
Shokri, Matin [2 ]
Aminifar, Amir [3 ]
机构
[1] Heidelberg Univ, Inst Comp Engn, D-69120 Heidelberg, Germany
[2] KN Toosi Univ Technol, Fac Comp Engn, Tehran 1631714191, Iran
[3] Lund Univ, Dept Elect & Informat Technol, S-22100 Lund, Sweden
关键词
Edge federated learning; Mobile-health technologies; Privacy-preserving machine learning; SUDDEN UNEXPECTED DEATH; RESOURCE; EPILEPSY; CARE;
D O I
10.1016/j.future.2024.07.035
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Machine Learning (ML) algorithms are generally designed for scenarios in which all data is stored in one data center, where the training is performed. However, in many applications, e.g., in the healthcare domain, the training data is distributed among several entities, e.g., different hospitals or patients' mobile devices/sensors. At the same time, transferring the data to a central location for learning is certainly not an option, due to privacy concerns and legal issues, and in certain cases, because of the communication and computation overheads. Federated Learning (FL) is the state-of-the-art collaborative ML approach for training an ML model across multiple parties holding local data samples, without sharing them. However, enabling learning from distributed data over such edge Internet of Things (IoT) systems (e.g., mobile-health and wearable technologies, involving sensitive personal/medical data) in a privacy-preserving fashion presents a major challenge mainly due to their stringent resource constraints, i.e., limited computing capacity, communication bandwidth, memory storage, and battery lifetime. In this paper, we propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure. We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform based on the seizure detection application in epilepsy monitoring using wearable technologies.
引用
收藏
页码:625 / 637
页数:13
相关论文
共 50 条
  • [21] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [22] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [23] Privacy-Preserving Asynchronous Federated Learning Mechanism for Edge Network Computing
    Lu, Xiaofeng
    Liao, Yuying
    Lio, Pietro
    Hui, Pan
    IEEE ACCESS, 2020, 8 : 48970 - 48981
  • [24] A Privacy-Preserving Incentive Mechanism for Federated Cloud-Edge Learning
    Liu, Tianyu
    Di, Boya
    Wang, Shupeng
    Song, Lingyang
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [25] Privacy-Preserving and Low-Latency Federated Learning in Edge Computing
    He, Chunrong
    Liu, Guiyan
    Guo, Songtao
    Yang, Yuanyuan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20): : 20149 - 20159
  • [26] An Efficient and Dynamic Privacy-Preserving Federated Learning System for Edge Computing
    Tang, Xinyu
    Guo, Cheng
    Choo, Kim-Kwang Raymond
    Liu, Yining
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 207 - 220
  • [27] A privacy-preserving federated learning scheme with homomorphic encryption and edge computing
    Zhu, Bian
    Niu, Ling
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 118 : 11 - 20
  • [28] Privacy-preserving in Blockchain-based Federated Learning systems
    Sameera, K. M.
    Nicolazzo, Serena
    Arazzi, Marco
    Nocera, Antonino
    Rehiman, K. A. Rafidha
    Vinod, P.
    Conti, Mauro
    COMPUTER COMMUNICATIONS, 2024, 222 : 38 - 67
  • [29] EAPS: Edge-Assisted Privacy-Preserving Federated Prediction Systems
    Feng, Daquan
    Huang, Guanxin
    Feng, Chenyuan
    Cao, Bin
    Wang, Zhenzhong
    Xia, Xiang-Gen
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [30] Blockchain-Based Privacy-Preserving Federated Learning for Mobile Crowdsourcing
    Ma, Haiying
    Huang, Shuanglong
    Guo, Jiale
    Lam, Kwok-Yan
    Yang, Tianling
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13884 - 13899