Well-posedness and large-time behavior for the two-phase system with magnetic field in critical Besov spaces

被引:0
|
作者
Zhu, Limin [1 ,2 ]
机构
[1] Shandong Inst Petr & Chem Technol, Sch Big Data & Basic Sci, Dongying 257000, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R China
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2024年 / 104卷 / 10期
关键词
NAVIER-STOKES EQUATIONS; GLOBAL WEAK SOLUTIONS; VLASOV-FOKKER-PLANCK; CONVERGENCE-RATES; ASYMPTOTIC-BEHAVIOR; CLASSICAL-SOLUTIONS; EXISTENCE; DECAY; MODEL; FLOW;
D O I
10.1002/zamm.202300522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to the study of the two-phase system with magnetic field in multi-dimensional spaces d >= 2$d\ge 2$. We investigate the local and global well-posedness of strong solutions to the Cauchy problem in critical Besov spaces. Moreover, a Lyapunov-type energy argument can be developed, which leads to the time-decay estimates of solutions without additional smallness assumptions. We improve the previous effects obtained by Wen and Zhu (JDE-2018), Wang and Cheng (AMS-2022), where they established the global well-posedness of strong solutions in the H2(R3)$ H<^>{2}(\mathbb {R}<^>{3})$-norm Sobolev spaces.
引用
收藏
页数:28
相关论文
共 50 条