Sliding-attention transformer neural architecture for predicting T cell receptor-antigen-human leucocyte antigen binding

被引:7
作者
Feng, Ziyan [1 ]
Chen, Jingyang [2 ]
Hai, Youlong [3 ]
Pang, Xuelian [1 ]
Zheng, Kun [3 ]
Xie, Chenglong [4 ]
Zhang, Xiujuan [4 ]
Li, Shengqing [4 ]
Zhang, Chengjuan [5 ]
Liu, Kangdong [6 ]
Zhu, Lili [1 ]
Hu, Xiaoyong [3 ]
Li, Shiliang [7 ]
Zhang, Jie [2 ]
Zhang, Kai [8 ]
Li, Honglin [1 ,7 ,9 ]
机构
[1] East China Univ Sci & Technol, Sch Pharm, Shanghai Key Lab New Drug Design, Shanghai, Peoples R China
[2] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Urol, Shanghai Sixth Peoples Hosp, Sch Med, Shanghai, Peoples R China
[4] Fudan Univ, Huashan Hosp, Dept Pulm & Crit Care Med, Shanghai, Peoples R China
[5] Zhengzhou Univ, Henan Canc Hosp, Ctr Biorepository, Affiliated Canc Hosp, Zhengzhou, Peoples R China
[6] Zhengzhou Univ, Sch Basic Med Sci, Dept Pathophysiol, Zhengzhou, Peoples R China
[7] East China Normal Univ, Innovat Ctr Artificial Intelligence & Drug Discove, Shanghai, Peoples R China
[8] East China Normal Univ, Sch Comp Sci & Technol, Shanghai, Peoples R China
[9] Lingang Lab, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
CLASS-I BINDING; MHC CLASS-I; NEOANTIGEN VACCINE; CANCER; DISCOVERY; ANTI-PD-1; DATABASE; IMPROVE;
D O I
10.1038/s42256-024-00901-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neoantigens are promising targets for immunotherapy by eliciting immune response and removing cancer cells with high specificity, low toxicity and ease of personalization. However, identifying effective neoantigens remains difficult because of the complex interactions among T cell receptors, antigens and human leucocyte antigen sequences. In this study, we integrate important physical and biological priors with the Transformer model and propose the physics-inspired sliding transformer (PISTE). In PISTE, the conventional, data-driven attention mechanism is replaced with physics-driven dynamics that steers the positioning of amino acid residues along the gradient field of their interactions. This allows navigating the intricate landscape of biosequence interactions intelligently, leading to improved accuracy in T cell receptor-antigen-human leucocyte antigen binding prediction and robust generalization to rare sequences. Furthermore, PISTE effectively recovers residue-level contact relationships even in the absence of three-dimensional structure training data. We applied PISTE in a multitude of immunogenic tumour types to pinpoint neoantigens and discern neoantigen-reactive T cells. In a prospective study of prostate cancer, 75% of the patients elicited immune responses through PISTE-predicted neoantigens. Predicting TCR-antigen-human leucocyte antigen binding opens the door to neoantigen identification. In this study, a physics-inspired sliding transformer (PISTE) system is used to guide the positioning of amino acid residues along the gradient field of their interactions, boosting binding prediction accuracy.
引用
收藏
页码:1216 / 1230
页数:20
相关论文
共 85 条
[1]  
Akache B, 2021, METHODS MOL BIOL, V2183, P525, DOI 10.1007/978-1-0716-0795-4_30
[2]   Deep neural networks predict class I major histocompatibility complex epitope presentation and transfer learn neoepitope immunogenicity [J].
Albert, Benjamin Alexander ;
Yang, Yunxiao ;
Shao, Xiaoshan M. M. ;
Singh, Dipika ;
Smith, Kellie N. N. ;
Anagnostou, Valsamo ;
Karchin, Rachel .
NATURE MACHINE INTELLIGENCE, 2023, 5 (08) :861-+
[3]   Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer [J].
Awad, Mark M. ;
Govindan, Ramaswamy ;
Balogh, Kristen N. ;
Spigel, David R. ;
Garon, Edward B. ;
Bushway, Meghan E. ;
Poran, Asaf ;
Sheen, Joong Hyuk ;
Kohler, Victoria ;
Esaulova, Ekaterina ;
Srouji, John ;
Ramesh, Suchitra ;
Vyasamneni, Rohit ;
Karki, Binisha ;
Sciuto, Tracey E. ;
Sethi, Himanshu ;
Dong, Jesse Z. ;
Moles, Melissa A. ;
Manson, Kelledy ;
Rooney, Michael S. ;
Khondker, Zakaria S. ;
DeMario, Mark ;
Gaynor, Richard B. ;
Srinivasan, Lakshmi .
CANCER CELL, 2022, 40 (09) :1010-+
[4]   STRUCTURE OF THE HUMAN CLASS-I HISTOCOMPATIBILITY ANTIGEN, HLA-A2 [J].
BJORKMAN, PJ ;
SAPER, MA ;
SAMRAOUI, B ;
BENNETT, WS ;
STROMINGER, JL ;
WILEY, DC .
NATURE, 1987, 329 (6139) :506-512
[5]   Advances in the development of personalized neoantigen-based therapeutic cancer vaccines [J].
Blass, Eryn ;
Ott, Patrick A. .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (04) :215-229
[6]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[7]   MiXCR: software for comprehensive adaptive immunity profiling [J].
Bolotin, Dmitriy A. ;
Poslavsky, Stanislav ;
Mitrophanov, Igor ;
Shugay, Mikhail ;
Mamedov, Ilgar Z. ;
Putintseva, Ekaterina V. ;
Chudakov, Dmitriy M. .
NATURE METHODS, 2015, 12 (05) :380-381
[8]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[9]   Deep learning using tumor HLA peptide mass spectrometry datasets improves neoantigen identification [J].
Bulik-Sullivan, Brendan ;
Busby, Jennifer ;
Palmer, Christine D. ;
Davis, Matthew J. ;
Murphy, Tyler ;
Clark, Andrew ;
Busby, Michele ;
Duke, Fujiko ;
Yang, Aaron ;
Young, Lauren ;
Ojo, Noelle C. ;
Caldwell, Kamilah ;
Abhyankar, Jesse ;
Boucher, Thomas ;
Hart, Meghan G. ;
Makarov, Vladimir ;
De Montpreville, Vincent Thomas ;
Mercier, Olaf ;
Chan, Timothy A. ;
Scagliotti, Giorgio ;
Bironzo, Paolo ;
Novello, Silvia ;
Karachaliou, Niki ;
Rosell, Rafael ;
Anderson, Ian ;
Gabrail, Nashat ;
Hrom, John ;
Limvarapuss, Chainarong ;
Choquette, Karin ;
Spira, Alexander ;
Rousseau, Raphael ;
Voong, Cynthia ;
Rizvi, Naiyer A. ;
Fadel, Elie ;
Frattini, Mark ;
Jooss, Karin ;
Skoberne, Mojca ;
Francis, Joshua ;
Yelensky, Roman .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :55-+
[10]   Techniques to Improve the Direct Ex Vivo Detection of Low Frequency Antigen-Specific CD8+ T Cells with Peptide-Major Histocompatibility Complex Class I Tetramers [J].
Chattopadhyay, Pratip K. ;
Melenhorst, J. Joseph ;
Ladell, Kristin ;
Gostick, Emma ;
Scheinberg, Phillip ;
Barrett, A. John ;
Wooldridge, Linda ;
Roederer, Mario ;
Sewell, Andrew K. ;
Price, David A. .
CYTOMETRY PART A, 2008, 73A (11) :1001-1009