Low-Temperature Annealing of Nanoscale Defects in Polycrystalline Graphite

被引:0
作者
Liu, Gongyuan [1 ]
Oh, Hajin [1 ]
Rahman, Md Hafijur [1 ]
Du, Jing [1 ]
Windes, William [2 ]
Haque, Aman [1 ]
机构
[1] Penn State Univ, Dept Mech Engn, University Pk, PA 16803 USA
[2] Idaho Natl Lab, Idaho Falls, ID 83415 USA
来源
C-JOURNAL OF CARBON RESEARCH | 2024年 / 10卷 / 03期
关键词
polycrystalline graphite; non-thermal annealing; electron wind force; Raman spectroscopy; NUCLEAR GRAPHITE; MICROSTRUCTURAL CHANGES; ION IRRADIATION; DAMAGE;
D O I
10.3390/c10030076
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Polycrystalline graphite contains multi-scale defects, which are difficult to anneal thermally because of the extremely high temperatures involved in the manufacturing process. In this study, we demonstrate annealing of nuclear graphite NBG-18 at temperatures below 28 degrees C, exploiting the electron wind force, a non-thermal stimulus. High current density pulses were passed through the specimens with a very low-duty cycle so that the electron momentum could mobilize the defects without heating the specimen. The effectiveness of this technique is presented with a significant decrease in electrical resistivity, defect counts from X-ray computed tomography, Raman spectroscopy, and nanoindentation-based mechanical characterization. Such multi-modal evidence highlights the feasibility of nanoscale defect control at temperatures about two orders of magnitude below the graphitization temperature.
引用
收藏
页数:10
相关论文
共 31 条
  • [1] Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing
    Ammar, M. R.
    Galy, N.
    Rouzaud, J. N.
    Toulhoat, N.
    Vaudey, C. E.
    Simon, P.
    Moncoffre, N.
    [J]. CARBON, 2015, 95 : 364 - 373
  • [2] Multiscale characterization and comparison of historical and modern nuclear graphite grades
    Arregui-Mena, Jose David
    Worth, Robert N.
    Bodel, William
    Maerz, Benjamin
    Li, Wenjing
    Campbell, Anne A.
    Cakmak, Ercan
    Gallego, Nidia
    Contescu, Cristian
    Edmondson, Philip D.
    [J]. MATERIALS CHARACTERIZATION, 2022, 190
  • [3] A study of the annealing behavior of neutron irradiated graphite
    Burchell, T. D.
    Pappano, P. J.
    Strizak, J. P.
    [J]. CARBON, 2011, 49 (01) : 3 - 10
  • [4] Recent progress in the research and development of natural graphite for use in thermal management, battery electrodes and the nuclear industry
    Duan, Sheng-zhi
    Wu, Xiao-wen
    Wang, Yi-fan
    Feng, Jian
    Hou, Shi-yu
    Huang, Zheng-hong
    Shen, Ke
    Chen, Yu-xi
    Liu, Hong-bo
    Kang, Fei-yu
    [J]. NEW CARBON MATERIALS, 2023, 38 (01) : 73 - 95
  • [5] Early Damage Mechanisms in Nuclear Grade Graphite under Irradiation
    Eapen, J.
    Krishna, R.
    Burchell, T. D.
    Murty, K. L.
    [J]. MATERIALS RESEARCH LETTERS, 2014, 2 (01): : 43 - 50
  • [6] Characterization of ripplocation mobility in graphite
    Gruber, J.
    Barsoum, M. W.
    Tucker, G. J.
    [J]. MATERIALS RESEARCH LETTERS, 2020, 8 (02): : 82 - 87
  • [7] Huntington H.B., 1975, Diffusion in Solids: Recent Developments, P303
  • [8] Inagaki M, 2001, WORLD CARBON, V1, P179
  • [9] Microstructural changes in nuclear graphite induced by thermal annealing
    Johns, Steve
    Yoder, Timothy
    Chinnathambi, Karthik
    Ubic, Rick
    Windes, William E.
    [J]. MATERIALS CHARACTERIZATION, 2022, 194
  • [10] Microstructural characterization and pore structure analysis of nuclear graphite
    Kane, J.
    Karthik, C.
    Butt, D. P.
    Windes, W. E.
    Ubic, R.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (02) : 189 - 197