Chern-Simons gravity and PT symmetry

被引:6
作者
Mavromatos, N. E. [1 ,2 ]
Sarkar, Sarben [2 ]
机构
[1] Natl Tech Univ Athens, Sch Appl Math & Phys Sci, Phys Div, Zografou Campus, Athens 15780, Greece
[2] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
NON-HERMITIAN HAMILTONIANS; PSEUDO-HERMITICITY; FIELD-THEORY; QUANTUM; TORSION; ENERGY;
D O I
10.1103/PhysRevD.110.045004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This paper considers the possibility that, starting from a relativistic Hermitian quantum field theory in the ultraviolet (UV) regime, and applying a nonperturbative renormalization-group (RG) flow, we arrive at a situation where there are infrared (IR) singularities in the RG flow of couplings. The latter can be resolved by assuming that the theory can have a phase described by a related non-Hermitian PT-symmetric modification in the IR. The UV-to-IR (Hermitian-to-PT-symmetric) transition can occur in a single renormalization-group flow of the pertinent couplings, as demonstrated in concrete examples. When embedded in a gravitational setting such a transition can lead to a repulsive gravity phase. If there is a RG flow to a repulsive PT-symmetric gravity, then this would be an alternative to dark energy. The discussion here is presented in the context of a string-inspired Chern-Simons gravitational effective action, which involves a pseudoscalar (axionlike) field coupled to Abelian gauge fields and gravity; it may also hold more generally in gravity with torsion. The validity of such a scenario in realistic theories might alleviate the need for de Sitter phases in the current epoch of cosmological evolution, thus avoiding their associated conceptual and technical complications.
引用
收藏
页数:18
相关论文
共 140 条
[1]   Planck 2018 results: V. CMB power spectra and likelihoods [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Casaponsa, B. ;
Challinor, A. ;
Chiang, H. C. ;
Colombo, L. P. L. ;
Combet, C. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Rosa, A. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. ;
Fernandez-Cobos, R. .
ASTRONOMY & ASTROPHYSICS, 2020, 641
[2]  
Agmon NB, 2023, Arxiv, DOI arXiv:2212.06187
[3]   Wilsonian approach to the interaction?2(i?)ε [J].
Ai, Wen-Yuan ;
Alexandre, Jean ;
Sarkar, Sarben .
PHYSICAL REVIEW D, 2023, 107 (02)
[4]   PT-symmetric -gφ4 theory [J].
Ai, Wen-Yuan ;
Bender, Carl M. ;
Sarkar, Sarben .
PHYSICAL REVIEW D, 2022, 106 (12)
[5]   Birefringent gravitational waves and the consistency check of inflation [J].
Alexander, S ;
Martin, J .
PHYSICAL REVIEW D, 2005, 71 (06) :1-8
[6]   Leptogenesis from gravity waves in models of inflation [J].
Alexander, SHS ;
Peskin, ME ;
Sheikh-Jabbari, MM .
PHYSICAL REVIEW LETTERS, 2006, 96 (08) :1-4
[7]   Chern-Simons modified general relativity [J].
Alexander, Stephon ;
Yunes, Nicolas .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 480 (1-2) :1-55
[8]   Light neutrino masses from a non-Hermitian Yukawa theory [J].
Alexandre, J. ;
Bender, C. M. ;
Millington, P. .
FIFTH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES, 2017, 873
[9]   Dynamical Majorana neutrino masses and axions I [J].
Alexandre, Jean ;
Mavromatos, Nick E. ;
Soto, Alex .
NUCLEAR PHYSICS B, 2020, 961
[10]   Discrete spacetime symmetries and particle mixing in non-Hermitian scalar quantum field theories [J].
Alexandre, Jean ;
Ellis, John ;
Millington, Peter .
PHYSICAL REVIEW D, 2020, 102 (12)