scRFR: imputation of single-cell RNA-seq data based on recurrent feature inference

被引:0
作者
Zhu, Bangyu [1 ]
Zhang, Shaoqiang [1 ]
Li, Lixuan [1 ]
Qian, Zhizhong [1 ]
机构
[1] Tianjin Normal Univ, 393 Extension Bin Shui West Rd, Tianjin, Peoples R China
来源
PROCEEDINGS OF 2024 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND INTELLIGENT COMPUTING, BIC 2024 | 2024年
关键词
Bionformatics; scRNA-seq; dropout; RFR; imputation; Computer vision;
D O I
10.1145/3665689.3665759
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The area of single-cell RNA sequencing, or scRNA-seq, is expanding quickly and aids in the analysis of expression status. It provides a powerful tool for determining precise expression of tens of thousands of single cells, deciphering cell heterogeneity and cell subsets, etc. Nevertheless, the scRNA-seq data contains a great deal of biological and technical noise, and the associated analysis still has a long way to go. We introduced scRFR, a technique for imputation of scRNA-seq data based on recurrent feature reasoning for Image Inpainting, in order to address "dropout" noise seen in scRNA-seq data. It was discovered through testing that this algorithm has a greater imputation accuracy.
引用
收藏
页码:420 / 424
页数:5
相关论文
共 21 条
[1]   A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure [J].
Baron, Maayan ;
Veres, Adrian ;
Wolock, Samuel L. ;
Faust, Aubrey L. ;
Gaujoux, Renaud ;
Vetere, Amedeo ;
Ryu, Jennifer Hyoje ;
Wagner, Bridget K. ;
Shen-Orr, Shai S. ;
Klein, Allon M. ;
Melton, Douglas A. ;
Yanai, Itai .
CELL SYSTEMS, 2016, 3 (04) :346-+
[2]   Single-Cell RNA-Seq Technologies and Related Computational Data Analysis [J].
Chen, Geng ;
Ning, Baitang ;
Shi, Tieliu .
FRONTIERS IN GENETICS, 2019, 10
[3]   Single-cell RNA-seq denoising using a deep count autoencoder [J].
Eraslan, Goekcen ;
Simon, Lukas M. ;
Mircea, Maria ;
Mueller, Nikola S. ;
Theis, Fabian J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[4]   SAVER: gene expression recovery for single-cell RNA sequencing [J].
Huang, Mo ;
Wang, Jingshu ;
Torre, Eduardo ;
Dueck, Hannah ;
Shaffer, Sydney ;
Bonasio, Roberto ;
Murray, John I. ;
Raj, Arjun ;
Li, Mingyao ;
Zhang, Nancy R. .
NATURE METHODS, 2018, 15 (07) :539-+
[5]   Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types [J].
Jaitin, Diego Adhemar ;
Kenigsberg, Ephraim ;
Keren-Shaul, Hadas ;
Elefant, Naama ;
Paul, Franziska ;
Zaretsky, Irina ;
Mildner, Alexander ;
Cohen, Nadav ;
Jung, Steffen ;
Tanay, Amos ;
Amit, Ido .
SCIENCE, 2014, 343 (6172) :776-779
[6]   Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression [J].
Kim, Jong Kyoung ;
Kolodziejczyk, Aleksandra A. ;
Illicic, Tomislav ;
Teichmann, Sarah A. ;
Marioni, John C. .
NATURE COMMUNICATIONS, 2015, 6
[7]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[8]   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells [J].
Klein, Allon M. ;
Mazutis, Linas ;
Akartuna, Ilke ;
Tallapragada, Naren ;
Veres, Adrian ;
Li, Victor ;
Peshkin, Leonid ;
Weitz, David A. ;
Kirschner, Marc W. .
CELL, 2015, 161 (05) :1187-1201
[9]   Single Cell RNA-Sequencing of Pluripotent States Unlocks Modular Transcriptional Variation [J].
Kolodziejczyk, Aleksandra A. ;
Kim, Jong Kyoung ;
Tsang, Jason C. H. ;
Ilicic, Tomislav ;
Henriksson, Johan ;
Natarajan, Kedar N. ;
Tuck, Alex C. ;
Gao, Xuefei ;
Buehler, Marc ;
Liu, Pentao ;
Marioni, John C. ;
Teichmann, Sarah A. .
CELL STEM CELL, 2015, 17 (04) :471-485
[10]   The Technology and Biology of Single-Cell RNA Sequencing [J].
Kolodziejczyk, Aleksandra A. ;
Kim, Jong Kyoung ;
Svensson, Valentine ;
Marioni, John C. ;
Teichmann, Sarah A. .
MOLECULAR CELL, 2015, 58 (04) :610-620