Riesz and Kolmogorov inequality for harmonic quasiregular mappings

被引:2
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Cetinjski Put B B, Podgorica 81000, Montenegro
关键词
Harmonic mappings; Quasiregular mappings; Riesz inequality; Kolmogorov inequality; CONSTANTS;
D O I
10.1016/j.jmaa.2024.128767
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let K 1and p.(1, 2]. We obtain an asymptotically sharp constant c( K, p) as K. 1in the inequality f p = c( K, p) f p, where f. hpis a K-quasiregular harmonic mapping in the unit disk belonging to the Hardy space hp. This result holds under the conditions arg(f(0)). - p2p, p2p and f(D) n(-8, 0) =O. Our findings improve a recent result by Liu and Zhu [12]. Additionally, we extend this result to K-quasiregular harmonic mappings in the unit ball in Rn. Finally, we consider the Kolmogorov theorem for quasiregular harmonic mappings in the plane. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:15
相关论文
共 19 条
[1]  
Astala K, 2011, PURE APPL MATH Q, V7, P19
[2]  
Axler S., 1992, Harmonic Function Theory
[3]  
Chen SL, 2023, Arxiv, DOI arXiv:2310.15452
[4]  
Duren P., 1970, Pure and Applied Mathematics (Academic Press), V38
[5]   A SUPERHARMONIC PROOF OF THE RIESZ,M. CONJUGATE FUNCTION THEOREM [J].
ESSEN, M .
ARKIV FOR MATEMATIK, 1984, 22 (02) :241-249
[6]  
Grafakos L, 1997, MATH RES LETT, V4, P469
[7]   Best constants for some operators associated with the Fourier and Hilbert transforms [J].
Hollenbeck, B ;
Kalton, NJ ;
Verbitsky, IE .
STUDIA MATHEMATICA, 2003, 157 (03) :237-278
[8]   Best Constant Inequalities Involving the Analytic and Co-Analytic Projection [J].
Hollenbeck, Brian ;
Verbitsky, Igor E. .
TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 :285-+
[9]  
HORMANDER L, 1994, PROGR MATH, V127
[10]   ON RIESZ TYPE INEQUALITIES FOR HARMONIC MAPPINGS ON THE UNIT DISK [J].
Kalaj, David .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (06) :4031-4051