An Axiom System for Basic Hybrid Logic with Propositional Quantifiers

被引:1
作者
Blackburn, Patrick [1 ]
Brauner, Torben [2 ]
Kofod, Julie Lundbak [1 ]
机构
[1] Roskilde Univ, Dept Philosophy & Sci Studies, Roskilde, Denmark
[2] Roskilde Univ, Dept People & Technol, Roskilde, Denmark
来源
LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2023 | 2023年 / 13923卷
关键词
MODAL LOGIC;
D O I
10.1007/978-3-031-39784-4_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present an axiom system for basic hybrid logic extended with propositional quantifiers (a second-order extension of basic hybrid logic) and prove its (basic and pure) strong completeness with respect to general models.
引用
收藏
页码:118 / 134
页数:17
相关论文
共 21 条
[1]  
Areces C, 2007, STUD LOGIC PRACT REA, V3, P821
[2]  
Baader F, 2003, DESCRIPTION LOGIC HANDBOOK: THEORY, IMPLEMENTATION AND APPLICATIONS, P43
[3]   Second-order propositional modal logic: Expressiveness and completeness results [J].
Belardinelli, Francesco ;
van der Hoek, Wiebe ;
Kuijer, Louwe B. .
ARTIFICIAL INTELLIGENCE, 2018, 263 :3-45
[4]   Pure extensions, proof rules, and hybrid axiomatics [J].
Blackburn P. ;
Ten Cate B. .
Studia Logica, 2006, 84 (2) :277-322
[5]  
Blackburn P., 2001, Cambridge Tracts in Theoretical Computer Science, DOI DOI 10.1017/CBO9781107050884
[6]   Arthur Prior and hybrid logic [J].
Blackburn, Patrick .
SYNTHESE, 2006, 150 (03) :329-372
[7]  
Blackburn PR., 2020, METAPHYSICS TIME THE, P401
[8]  
Brauner Torben, 2017, STANFORD ENCY PHILOS
[9]   ON MODAL LOGIC WITH PROPOSITIONAL QUANTIFIERS [J].
BULL, RA .
JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) :257-&
[10]  
Copeland B. J., 2017, The Stanford Encyclopedia of Philosophy