DMFF-YOLO: YOLOv8 Based on Dynamic Multiscale Feature Fusion for Object Detection on UAV Aerial Photography

被引:1
作者
Qiu, Xiaoyang [1 ]
Chen, Yajun [1 ]
Sun, Chaoyue [1 ]
Li, Jianying [1 ]
Niu, Meiqi [1 ]
机构
[1] China West Normal Univ, Sch Elect Informat Engn, Nanchong 637009, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Feature extraction; Drones; Monte Carlo methods; Object detection; YOLO; Autonomous aerial vehicles; Target tracking; Detection algorithms; Multi-scale feature fusion; small object detection; UAV; NETWORK;
D O I
10.1109/ACCESS.2024.3452716
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid proliferation of drones across various domains, aerial target detection has become increasingly crucial. However, the targets in aerial images present challenges such as scale variation, small size, and density, leading to suboptimal performance of current detectors on aerial images. Based on the aforementioned challenges, we design an efficient aerial target detection algorithm called DMFF-YOLO. Specifically, to address the issues of small target size and scale variation, we design the DMFF neck structure, adding a small target detection head to tackle the small target size problem, using the DMC module to fuse different scale features for enriching detailed information, and employing the DSSFF module to construct a scale sequence space to solve the target scale variation problem. In the network backbone, we employ RFCBAMConv modules as downsampling layers, which interact with receptive-field features to mitigate the information disparity caused by positional changes and outperform traditional convolutional layers. Finally, we design the Soft-NMS-CIoU module to address the issue of suppressing adjacent boxes due to dense targets. On the VisDrone dataset, compared to the original algorithm, our method reduces the number of parameters by 31.1% while achieving an 11.7% improvement in mAP50. Extensive experiments on the VisDrone, DOTA, and UAVDT datasets demonstrate that the proposed algorithm performs well in aerial image detection tasks.
引用
收藏
页码:125160 / 125169
页数:10
相关论文
共 47 条
[1]   ATSS Deep Learning-Based Approach to Detect Apple Fruits [J].
Biffi, Leonardo Josoe ;
Mitishita, Edson ;
Liesenberg, Veraldo ;
dos Santos, Anderson Aparecido ;
Goncalves, Diogo Nunes ;
Estrabis, Nayara Vasconcelos ;
Silva, Jonathan de Andrade ;
Osco, Lucas Prado ;
Ramos, Ana Paula Marques ;
Centeno, Jorge Antonio Silva ;
Schimalski, Marcos Benedito ;
Rufato, Leo ;
Neto, Silvio Luis Rafaeli ;
Marcato Junior, Jose ;
Goncalves, Wesley Nunes .
REMOTE SENSING, 2021, 13 (01) :1-23
[2]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[3]   GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small Object Detection [J].
Cao, Jinshan ;
Bao, Wenshu ;
Shang, Haixing ;
Yuan, Ming ;
Cheng, Qian .
REMOTE SENSING, 2023, 15 (20)
[4]   A Global-Local Self-Adaptive Network for Drone-View Object Detection [J].
Deng, Sutao ;
Li, Shuai ;
Xie, Ke ;
Song, Wenfeng ;
Liao, Xiao ;
Hao, Aimin ;
Qin, Hong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 :1556-1569
[5]   VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results [J].
Du, Dawei ;
Zhu, Pengfei ;
Wen, Longyin ;
Bian, Xiao ;
Ling, Haibin ;
Hu, Qinghua ;
Peng, Tao ;
Zheng, Jiayu ;
Wang, Xinyao ;
Zhang, Yue ;
Bo, Liefeng ;
Shi, Hailin ;
Zhu, Rui ;
Kumar, Aashish ;
Li, Aijin ;
Zinollayev, Almaz ;
Askergaliyev, Anuar ;
Schumann, Arne ;
Mao, Binjie ;
Lee, Byeongwon ;
Liu, Chang ;
Chen, Changrui ;
Pan, Chunhong ;
Huo, Chunlei ;
Yu, Da ;
Cong, Dechun ;
Zeng, Dening ;
Pailla, Dheeraj Reddy ;
Li, Di ;
Wang, Dong ;
Cho, Donghyeon ;
Zhang, Dongyu ;
Bai, Furui ;
Jose, George ;
Gao, Guangyu ;
Liu, Guizhong ;
Xiong, Haitao ;
Qi, Hao ;
Wang, Haoran ;
Qiu, Heqian ;
Li, Hongliang ;
Lu, Huchuan ;
Kim, Ildoo ;
Kim, Jaekyum ;
Shen, Jane ;
Lee, Jihoon ;
Ge, Jing ;
Xu, Jingjing ;
Zhou, Jingkai ;
Meier, Jonas .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :213-226
[6]   The Unmanned Aerial Vehicle Benchmark: Object Detection and Tracking [J].
Du, Dawei ;
Qi, Yuankai ;
Yu, Hongyang ;
Yang, Yifan ;
Duan, Kaiwen ;
Li, Guorong ;
Zhang, Weigang ;
Huang, Qingming ;
Tian, Qi .
COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 :375-391
[7]   Coarse-grained Density Map Guided Object Detection in Aerial Images [J].
Duan, Chengzhen ;
Wei, Zhiwei ;
Zhang, Chi ;
Qu, Siying ;
Wang, Hongpeng .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :2789-2798
[8]   Fast R-CNN [J].
Girshick, Ross .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1440-1448
[9]  
Github, YOLOv5
[10]   Multiple Moving Targets Surveillance Based on a Cooperative Network for Multi-UAV [J].
Gu, Jingjing ;
Su, Tao ;
Wang, Qiuhong ;
Du, Xiaojiang ;
Guizani, Mohsen .
IEEE COMMUNICATIONS MAGAZINE, 2018, 56 (04) :82-89