Facile syntheses of perovskite type LaMO3 (M=Fe, Co, Ni) nanofibers for high performance supercapacitor electrodes and lithium-ion battery anodes

被引:111
作者
Hu, Quanli [1 ]
Yue, Bin [1 ]
Shao, Hongyang [1 ]
Yang, Fan [1 ]
Wang, Jinghui [1 ]
Wang, Yin [1 ]
Liu, Jinghai [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Nano Innovat Inst NII, Inner Mongolia Key Lab Carbon Nanomat, Coll Chem & Mat Sci, Tongliao 028000, Peoples R China
基金
中国国家自然科学基金;
关键词
Lanthanum; Lithium ion battery; Nanofiber; Perovskite; Supercapacitors; ELECTROCHEMICAL PROPERTIES; COMBUSTION SYNTHESIS; HOLLOW NANOFIBERS; LAMNO3; PEROVSKITE; OXYGEN VACANCIES; IN-SITU; OXIDE; STORAGE; HYBRID; PHOTOCATALYST;
D O I
10.1016/j.jallcom.2020.157002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lanthanum-based LaMO3 (M = Fe, Co, Ni) perovskite nanofibers were effectively fabricated by electrospinning approach coupled with calcination process. The crystallinity, microstructures, morphologies, elemental compositions, and chemical bonding states of LaMO3 perovskites were investigated in detail. The electrochemical properties of LaMO3 perovskite nanofibers as supercapacitor electrodes and lithiumion battery anodes were elucidated. The specific capacitances of LaFeO3, LaCoO3, and LaNiO3 nanofibers were 183.6, 95.8 and 116.3 F g(-1) at the current density of 1 A g(-1), respectively. The supercapacitive properties of LaMO3 NFs had originated from the redox reactions of M3+/M2+. As lithium-ion battery anodes, LaMO3 (M = Fe, Co, Ni) nanofibers exhibited the specific discharge capacities of 331, 646, and 92 mAh g(-1) after 200 cycles, respectively. This research endowed the potential and competent candidates of the perovskite type lanthanum-based nanofibers for supercapacitor electrodes and lithium-ion battery anodes. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 83 条
[1]   New tolerance factor to predict the stability of perovskite oxides and halides [J].
Bartel, Christopher J. ;
Sutton, Christopher ;
Goldsmith, Bryan R. ;
Ouyang, Runhai ;
Musgrave, Charles B. ;
Ghiringhelli, Luca M. ;
Scheffler, Matthias .
SCIENCE ADVANCES, 2019, 5 (02)
[2]   High temperature magnetic properties of Sr-doped lanthanum cobalt oxide (La1-xSrxCoO3-δ) [J].
Baskar, Dinesh ;
Adler, Stuart B. .
CHEMISTRY OF MATERIALS, 2008, 20 (08) :2624-2628
[3]   Nanofibers of spinel-CdMn2O4: A new and high performance material for supercapacitor and Li-ion batteries [J].
Bhagwan, Jai ;
Sahoo, Asit ;
Yadav, K. L. ;
Sharma, Yogesh .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 703 :86-95
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Symmetric/Asymmetric Supercapacitor Based on the Perovskite-type Lanthanum Cobaltate Nanofibers with Sr-substitution. [J].
Cao, Yi ;
Lin, Baoping ;
Sun, Ying ;
Yang, Hong ;
Zhang, Xueqin .
ELECTROCHIMICA ACTA, 2015, 178 :398-406
[6]   Sr-doped Lanthanum Nickelate Nanofibers for High Energy Density Supercapacitors [J].
Cao, Yi ;
Lin, Baoping ;
Sun, Ying ;
Yang, Hong ;
Zhang, Xueqin .
ELECTROCHIMICA ACTA, 2015, 174 :41-50
[7]   Synthesis, structure and electrochemical properties of lanthanum manganese nanofibers doped with Sr and Cu [J].
Cao, Yi ;
Lin, Baoping ;
Sun, Ying ;
Yang, Hong ;
Zhang, Xueqin .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 638 :204-213
[8]   Perovskite LaNiO3-δ oxide as an anion-intercalated pseudocapacitor electrode [J].
Che, Wei ;
Wei, Mingrui ;
Sang, Zhongsheng ;
Ou, Yangkang ;
Liu, Yihui ;
Liu, Jinping .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 731 :381-388
[9]   Hierarchical Tubular Structures Composed of Co3O4 Hollow Nanoparticles and Carbon Nanotubes for Lithium Storage [J].
Chen, Yu Ming ;
Yu, Le ;
Lou, Xiong Wen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (20) :5990-5993
[10]   Direct growth of FeCo2O4 nanowire arrays on flexible stainless steel mesh for high-performance asymmetric supercapacitor [J].
Chodankar, Nilesh R. ;
Dubal, Deepak P. ;
Kwon, Yongchai ;
Kim, Do-Heyoung .
NPG ASIA MATERIALS, 2017, 9 :1-10