Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning

被引:2
作者
Tian, Yifeng [1 ]
Bagchi, Soumendu [2 ,3 ]
Myhill, Liam [4 ]
Po, Giacomo [5 ]
Martinez, Enrique [4 ]
Lin, Yen Ting [1 ]
Mathew, Nithin [2 ]
Perez, Danny [2 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Sci Div CCS 3, Informat Sci Grp, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Theoret Div T 1, Phys & Chem Mat, Los Alamos, NM 87545 USA
[3] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[4] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29623 USA
[5] Univ Miami, Dept Mech & Aerosp Engn, Miami, FL 33146 USA
关键词
PLASTIC-DEFORMATION; CORE STRUCTURE; DYNAMICS; MOTION; PLANES; GLIDE;
D O I
10.1038/s41524-024-01394-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dislocation mobility, which dictates the response of dislocations to an applied stress, is a fundamental property of crystalline materials that governs the evolution of plastic deformation. Traditional approaches for deriving mobility laws rely on phenomenological models of the underlying physics, whose free parameters are in turn fitted to a small number of intuition-driven atomic scale simulations under varying conditions of temperature and stress. This tedious and time-consuming approach becomes particularly cumbersome for materials with complex dependencies on stress, temperature, and local environment, such as body-centered cubic crystals (BCC) metals and alloys. In this paper, we present a novel, uncertainty quantification-driven active learning paradigm for learning dislocation mobility laws from automated high-throughput large-scale molecular dynamics simulations, using Graph Neural Networks (GNN) with a physics-informed architecture. We demonstrate that this Physics-informed Graph Neural Network (PI-GNN) framework captures the underlying physics more accurately compared to existing phenomenological mobility laws in BCC metals.
引用
收藏
页数:12
相关论文
共 62 条
[1]  
Anderson P., 2017, Theory of Dislocations, V718
[2]  
Bertin N, 2023, Arxiv, DOI arXiv:2309.14450
[3]   Accelerating discrete dislocation dynamics simulations with graph neural networks [J].
Bertin, Nicolas ;
Zhou, Fei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
[4]   ANHARMONICITY CONTRIBUTIONS TO DISLOCATION DRAG [J].
BRAILSFO.AD .
JOURNAL OF APPLIED PHYSICS, 1972, 43 (04) :1380-&
[5]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[6]  
Bulatov V. V., 2004, P 2004 ACM IEEE C SU, V19
[7]   Periodic image effects in dislocation modelling [J].
Cai, W ;
Bulatov, VV ;
Chang, JP ;
Li, J ;
Yip, S .
PHILOSOPHICAL MAGAZINE, 2003, 83 (05) :539-567
[8]   A non-singular continuum theory of dislocations [J].
Cai, W ;
Arsenlis, A ;
Weinberger, CR ;
Bulatov, VV .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2006, 54 (03) :561-587
[9]   Techniques to accelerate convergence of stress-controlled molecular dynamics simulations of dislocation motion [J].
Cereceda, David ;
Manuel Perlado, J. ;
Marian, Jaime .
COMPUTATIONAL MATERIALS SCIENCE, 2012, 62 :272-275
[10]   Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys [J].
Chen, Bing ;
Li, Suzhi ;
Zong, Hongxiang ;
Ding, Xiangdong ;
Sun, Jun ;
Ma, Evan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (28) :16199-16206