共 50 条
Depletion rates of O2-naphthenic acids from oil sands process-affected water in wetland microcosms
被引:0
|作者:
Cancelli, Alexander M.
[1
]
Gobas, Frank A. P. C.
[1
]
机构:
[1] Simon Fraser Univ, Sch Resource & Environm Management, 8888 Univ Dr, Burnaby, BC V5A 1S6, Canada
关键词:
PILOT-SCALE TREATMENT;
BED BIOFILM REACTOR;
NAPHTHENIC ACIDS;
WASTE-WATER;
ORGANIC-COMPOUNDS;
DEGRADATION;
TEMPERATURE;
PLANTS;
PERFORMANCE;
TOXICITY;
D O I:
10.1039/d4em00227j
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
Treatment wetland microcosms were constructed to evaluate the fate of O-2-naphthenic acids in microcosm reactors containing OSPW only (i.e., natural attenuation), OSPW with peat soil (sorption and microbial degradation), and cattail microcosm reactors (plant-mediated uptake and biotransformation). Depletion in OSPW occurs by mechanisms of natural attenuation, sorption and microbial degradation, and plant-mediated uptake and biotransformation. The average rate of depletion for O-2-naphthenic acids was 0.005 (SD 0.010) per day in OSPW only, 0.029 (SD 0.013) per day in OSPW with peat soil, and 0.043 (SD 0.013) per day in cattail microcosm reactors. Slow rates of depletion from OSPW by natural attenuation highlight the need to develop effective remediation strategies for OSPW, and the increase in rates of depletion for cattail microcosm reactors highlights the importance of wetland vegetation in supporting naphthenic acid removal from OSPW. Reactors containing OSPW with peat soil showed the greatest increase in rates of O-2-naphthenic acid depletion for lower molecular weight congeners compared to reactors with OSPW only. Cattail microcosm reactors showed the greatest increase in the rates of O-2-naphthenic acid depletion for higher molecular weight congeners compared to reactors with OSPW and peat soil.
引用
收藏
页码:1859 / 1867
页数:9
相关论文