Untrained physics-driven aberration retrieval network

被引:1
|
作者
Li, Shuo [1 ,2 ]
Wang, Bin [1 ,2 ]
Wang, Xiaofei [3 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt & Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Northeast Normal Univ, Sch Math & Stat, Key Lab Appl Stat MOE, Changchun 130024, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
DIGITAL HOLOGRAPHIC MICROSCOPY; PHASE-RETRIEVAL; NEURAL-NETWORKS; COMPENSATION; DIVERSITY; MAGNIFICATION;
D O I
10.1364/OL.523377
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the field of coherent diffraction imaging, phase retrieval is essential for correcting the aberration of an optic system. For estimating aberration from intensity, conventional methods rely on neural networks whose performance is limited by training datasets. In this Letter, we propose an untrained physics-driven aberration retrieval network (uPD-ARNet). It only uses one intensity image and iterates in a self-supervised way. This model consists of two parts: an untrained neural network and a forward physical model for the diffraction of the light field. This physical model can adjust the output of the untrained neural network, which can characterize the inverse process from the intensity to the aberration. The experiments support that our method is superior to other conventional methods for aberration retrieval. (c) 2024 Optica Publishing Group
引用
收藏
页码:4545 / 4548
页数:4
相关论文
共 50 条
  • [1] DH-GAN: a physics-driven untrained generative adversarial network for holographic imaging
    Chen X.
    Wang H.
    Razi A.
    Kozicki M.
    Mann C.
    Optics Express, 2023, 31 (06) : 10114 - 10235
  • [2] Dynamic coherent diffractive imaging with a physics-driven untrained learning method
    Yang, Dongyu
    Zhang, Junhao
    Tao, Ye
    Lv, Wenjin
    Lu, Shun
    Chen, Hao
    Xu, Wenhui
    Shi, Yishi
    OPTICS EXPRESS, 2021, 29 (20) : 31426 - 31442
  • [3] Desynchronous learning in a physics-driven learning network
    Wycoff, J. F.
    Dillavou, S.
    Stern, M.
    Liu, A. J.
    Durian, D. J.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (14):
  • [4] Towards practical single-shot phase retrieval with physics-driven deep neural network
    Ye, Qiuliang
    Wang, Li-Wen
    Lun, Daniel P. K.
    OPTICS EXPRESS, 2023, 31 (22) : 35982 - 35999
  • [5] A Physics-Driven Deep Learning Network for Subsurface Inversion
    Jin, Yuchen
    Wu, Xuqing
    Chen, Jiefu
    Huang, Yueqin
    2019 UNITED STATES NATIONAL COMMITTEE OF URSI NATIONAL RADIO SCIENCE MEETING (USNC-URSI NRSM), 2019,
  • [6] Physics-Driven Neural Network for Interval Q Inversion
    Wang, Yonghao
    Cao, Wei
    Geng, Weiheng
    Jia, Zhuo
    Lu, Wenkai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [7] Physics-driven untrained neural network for vortex beam compensation in adaptive optics aided underwater wireless optical communications
    Hu, Peng
    Zhu, Lei
    Zhu, Jianping
    Ren, Jianxin
    Chen, Shuaidong
    Ma, Jianxin
    Gao, Ran
    Jing, Zexuan
    Li, Zhipei
    Hu, Shanting
    Tian, Bo
    Wang, Xishuo
    Wang, Fei
    Xu, Qi
    Tian, Qinghua
    Chang, Huan
    Xin, Xiangjun
    Liu, Bo
    OPTICS EXPRESS, 2024, 32 (27): : 47936 - 47958
  • [8] Coherent modulation imaging using a physics-driven neural network
    Yang, Dongyu
    Zhang, Junhao
    Tao, Ye
    Lv, Wenjin
    Zhu, Yupeng
    Ruan, Tianhao
    Chen, Hao
    Jin, Xin
    Wang, Zhou
    Qiu, Jisi
    Shi, Yishi
    OPTICS EXPRESS, 2022, 30 (20): : 35647 - 35662
  • [9] Global Optimization of Dielectric Metasurfaces Using a Physics-Driven Neural Network
    Jiang, Jiaqi
    Fan, Jonathan A.
    NANO LETTERS, 2019, 19 (08) : 5366 - 5372
  • [10] Demonstration of Decentralized Physics-Driven Learning
    Dillavou, Sam
    Stern, Menachem
    Liu, Andrea J.
    Durian, Douglas J.
    PHYSICAL REVIEW APPLIED, 2022, 18 (01)