PHYSICS-INFORMED GENERALIZABLE WIRELESS CHANNEL MODELING WITH SEGMENTATION AND DEEP LEARNING: FUNDAMENTALS, METHODOLOGIES, AND CHALLENGES

被引:1
作者
Zhu, Ethan [1 ]
Sun, Haijian [2 ]
Ji, Mingyue [3 ]
机构
[1] Green Canyon High Sch, North Logan, UT 84341 USA
[2] Univ Georgia, Athens, GA USA
[3] Univ Utah, Salt Lake City, UT USA
关键词
Wireless communication; Computational modeling; Mathematical models; Data models; Accuracy; Training; Radio propagation;
D O I
10.1109/MWC.015.2300603
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Channel modeling is fundamental in advancing wireless systems and has thus attracted considerable research focus. Recent trends have seen a growing reliance on data-driven techniques to facilitate the modeling process and yield accurate channel predictions. In this work, we first provide a concise overview of data-driven channel modeling methods, highlighting their limitations. Subsequently, we introduce the concept and advantages of physics-informed neural network (PINN)-based modeling, and provide a summary of recent contributions in this area. Our findings demonstrate that PINN-based approaches in channel modeling exhibit promising attributes, such as generalizability, interpretability, and robustness. We offer a comprehensive architecture for PINN methodology, designed to inform and inspire future model development. A casestudy of our recent work on precise indoor channel prediction with semantic segmentation and deep learning is presented. The study concludes by addressing the challenges faced, and suggests potential research directions in this field.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 15 条
[1]   EM DeepRay: An Expedient, Generalizable, and Realistic Data-Driven Indoor Propagation Model [J].
Bakirtzis, Stefanos ;
Chen, Jiming ;
Qiu, Kehai ;
Zhang, Jie ;
Wassell, Ian .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (06) :4140-4154
[2]   Artificial Intelligence Enabled Radio Propagation for Communications-Part II: Scenario Identification and Channel Modeling [J].
Huang, Chen ;
He, Ruisi ;
Ai, Bo ;
Molisch, Andreas F. ;
Lau, Buon Kiong ;
Haneda, Katsuyuki ;
Liu, Bo ;
Wang, Cheng-Xiang ;
Yang, Mi ;
Oestges, Claude ;
Zhong, Zhangdui .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (06) :3955-3969
[3]  
Kamari Ahmad, 2023, mmSV:mmWave Vehicular Networking using Street View Imagery in Urban Environments, DOI [10.1145/3570361.3613291, DOI 10.1145/3570361.3613291]
[4]   Physics-informed machine learning [J].
Karniadakis, George Em ;
Kevrekidis, Ioannis G. ;
Lu, Lu ;
Perdikaris, Paris ;
Wang, Sifan ;
Yang, Liu .
NATURE REVIEWS PHYSICS, 2021, 3 (06) :422-440
[5]   Digital Twin of Wireless Systems: Overview, Taxonomy, Challenges, and Opportunities [J].
Khan, Latif U. ;
Han, Zhu ;
Saad, Walid ;
Hossain, Ekram ;
Guizani, Mohsen ;
Hong, Choong Seon .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2022, 24 (04) :2230-2254
[6]   RadioUNet: Fast Radio Map Estimation With Convolutional Neural Networks [J].
Levie, Ron ;
Yapar, Cagkan ;
Kutyniok, Gitta ;
Caire, Giuseppe .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (06) :4001-4015
[7]  
Molisch A. F., 2012, Wireless communications, V34
[8]  
Orekondy T., 2022, P 11 INT C LEARN REP
[9]   Radio Map Estimation [J].
Romero, Daniel ;
Kim, Seung-Jun .
IEEE SIGNAL PROCESSING MAGAZINE, 2022, 39 (06) :53-72
[10]   Toward Physics-Based Generalizable Convolutional Neural Network Models for Indoor Propagation [J].
Seretis, Aristeidis ;
Sarris, Costas D. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (06) :4112-4126