Appropriate Amount Application of Manure is Conducive to Improve Soil Aggregate Stability in Saline-Alkaline Soil: Analyzed from Soil Organic Carbon Mediated by Microbial Necromass Carbon

被引:1
|
作者
Gao, Chunwei [1 ]
Zhang, Shirong [1 ]
Chen, Mengmeng [2 ]
Cheng, Lingbao [1 ]
Zhang, Xiaoguang [1 ]
Ding, Xiaodong [1 ]
机构
[1] Qingdao Agr Univ, Coll Resources & Environm, Qingdao 266109, Peoples R China
[2] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
关键词
Microbial necromass carbon; Organic carbon functional groups; Humus fractions; Soil organic carbon; Aggregate stability; MATTER; SEQUESTRATION; ACID; FERTILIZER; RESIDUES; INDEXES; FUNGAL;
D O I
10.1007/s42729-024-02038-8
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Manure application is an effective measure to improve soil organic carbon (SOC). While the role of microbial necromass carbon (MNC) from manure on SOC and soil aggregate stability in saline-alkaline soils is less studied. In Yellow River Delta, a field experiment was implemented including: (1) CK: no fertilizer; (2) NPK: only mineral fertilizer applied as N 210 kg ha- 1, P 105 kg ha- 1 and K 135 kg ha- 1, respectively; (3) NPKC1: manure (500 kg C ha- 1) plus NPK; (4) NPKC2: manure (1000 kg C ha- 1) plus NPK; (5) NPKC3: manure (2000 kg C ha- 1) plus NPK. Manure application significantly increased the mean weight diameter (MWD) of soil aggregates in 0-40 cm soil. This was due to MNC with manure application was increased by 20.0%, 33.7%, 40.0% in 0-20 cm soil and 21.4%, 41.8%, 50.0% in 20-40 cm soil over CK treatment, which significantly increased the contribution of MNC to SOC. SOC was significantly increased by 5.3%, 11.7%, 7.5% (0-20 cm soil) and 20.6%, 28.6%, 31.7% (20-40 cm soil), which was contributed 76.7% and 89.5% variation of soil aggregates in two soil profiles. In addition, SOC was highest in NPKC2 and NPKC3 treatment, and there was no significant difference between them. Meanwhile, humus and OC functional groups had a similar trend with SOC. Appropriate manure application promoted the contribution of MNC to SOC, and was the best measurement to improve the formation of aggregates. It is crucial for soil sustainable utilization and agricultural production.
引用
收藏
页码:7256 / 7270
页数:15
相关论文
共 50 条
  • [41] Decades of Reforestation Significantly Change Microbial Necromass, Glomalin, and Their Contributions to Soil Organic Carbon
    Zhang, Mengling
    Che, Rongxiao
    Cheng, Zhibao
    Zhao, Hongkai
    Wu, Chengwei
    Hu, Jinming
    Zhang, Song
    Liu, Dong
    Cui, Xiaoyong
    Wu, Yibo
    SSRN, 2022,
  • [42] Increased contribution of microbial necromass to soil organic carbon in solar farms on the Tibetan Plateau
    Zhang, Xiyu
    Zhou, Jun
    Chen, Yang
    Fan, Jianrong
    JOURNAL OF MOUNTAIN SCIENCE, 2025, 22 (01) : 184 - 197
  • [43] Soil aggregation and soil aggregate stability regulate organic carbon and nitrogen storage in a red soil of southern China
    Mustafa, Adnan
    Xu Minggang
    Shah, Syed Atizaz Ali
    Abrar, Muhammad Mohsin
    Sun Nan
    Wang Baoren
    Cai Zejiang
    Saeed, Qudsia
    Naveed, Muhammad
    Mehmood, Khalid
    Nunez-Delgado, Avelino
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 270
  • [44] Integrating microbial community properties, biomass and necromass to predict cropland soil organic carbon
    Wang, Chao
    Wang, Xu
    Zhang, Yang
    Morrissey, Ember
    Liu, Yue
    Sun, Lifei
    Qu, Lingrui
    Sang, Changpeng
    Zhang, Hong
    Li, Guochen
    Zhang, Lili
    Fang, Yunting
    ISME COMMUNICATIONS, 2023, 3 (01):
  • [45] Increased contribution of microbial necromass to soil organic carbon in solar farms on the Tibetan Plateau
    ZHANG Xiyu
    ZHOU Jun
    CHEN Yang
    FAN Jianrong
    Journal of Mountain Science, 2025, 22 (01) : 184 - 197
  • [46] Decades of reforestation significantly change microbial necromass, glomalin, and their contributions to soil organic carbon
    Zhang, Mengling
    Che, Rongxiao
    Cheng, Zhibao
    Zhao, Hongkai
    Wu, Chengwei
    Hu, Jinming
    Zhang, Song
    Liu, Dong
    Cui, Xiaoyong
    Wu, Yibo
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 346
  • [47] Long-term cotton stubble return and subsoiling improve soil organic carbon by changing the stability and organic carbon of soil aggregates in coastal saline fields
    Zhang, Le
    Su, Xunya
    Meng, Hao
    Wang, Han
    Yan, Xiaoyu
    Qin, Dulin
    Liu, Chengmin
    Men, Yaqi
    Zhang, Xiaopei
    Song, Xianliang
    Sun, Xuezhen
    Tian, Xiaoli
    Mao, Lili
    SOIL & TILLAGE RESEARCH, 2024, 241
  • [48] Fungal necromass carbon contributes to organic carbon sequestration within soil macroaggregates under manure application combined with plastic film mulching
    Liu, Xu
    Bol, Roland
    An, Tingting
    Xu, Yingde
    Peng, Chang
    Li, Shuangyi
    Wang, Jingkuan
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (05) : 1899 - 1909
  • [49] Mineral-microbial interactions in nine-year organic fertilization field experiment: a mechanism for carbon storage in saline-alkaline paddy soil
    Chen, Mengmeng
    Zhang, Yuling
    Gao, Chunwei
    Zhang, Shirong
    Liu, Lu
    Wu, Lipeng
    Li, Yuyi
    Ding, Xiaodong
    PLANT AND SOIL, 2023, 489 (1-2) : 465 - 481
  • [50] Plant invasion reshapes the latitudinal pattern of soil microbial necromass and its contribution to soil organic carbon in coastal wetlands
    Zhang, Guangliang
    Bai, Junhong
    Wang, Wei
    Jia, Jia
    Huang, Laibin
    Kong, Fanlong
    Xi, Min
    CATENA, 2023, 222