Astonishing performance of zinc iron sulfide with MoS 2 composite in allium-shaped structure for comprehensive alkaline water splitting

被引:8
作者
Balu, Ranjith [1 ]
Devendrapandi, Gautham [2 ]
Karthika, P. C. [3 ]
Abd-Elkader, Omar H. [4 ]
Ramalingam, R. Jothi [5 ]
Kim, Woo Kyoung [6 ]
Reddy, Vasudeva Reddy Minnam [6 ]
Singh, Suresh [7 ]
Lavanya, Mahimaluru [8 ,9 ]
机构
[1] Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Phys, Chennai 602105, Tamilnadu, India
[2] Chitkara Univ, Ctr Res Impact & Outreach, Rajpura 140401, Punjab, India
[3] SRM Inst Sci & Technol, Dept Phys & Nanotechnol, Chennai 603203, Tamil Nadu, India
[4] King Saud Univ, Coll Sci, Dept Phys & Astron, POB 2455, Riyadh 11451, Saudi Arabia
[5] Lovely Profess Univ, Res & Dev Cell, Phagwara 144411, India
[6] Yeungnam Univ, Sch Chem Engn, 280 Daehak Ro Gyeongsan, Gyeongbuk 38541, South Korea
[7] Chitkara Univ, Chitkara Ctr Res & Dev, Kalujhanda 174103, Himachal Prades, India
[8] Duy Tan Univ, Inst Res & Dev, Da Nang 550000, Vietnam
[9] Duy Tan Univ, Fac Environm & Chem Engn, Da Nang 550000, Vietnam
关键词
Electrochemical water splitting; Non-noble metals; HER; OER; Electrocatalyst; NANOSHEET ARRAYS; ELECTROCATALYST; FOAM; NI; CO;
D O I
10.1016/j.ijhydene.2024.06.172
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrochemical water splitting offers a promising avenue for producing clean hydrogen fuel, essential for a sustainable energy landscape. A highly efficient catalyst, featuring a one-dimensional structure, has been synthesized by combining zinc iron sulfide with molybdenum disulfide (ZFSMS) on a nickel foam substrate. This synthesis method utilizes a simple yet effective hydrothermal approach tailored for efficient water splitting. By carefully engineering the interface between zinc iron sulfide and molybdenum disulfide, the electronic conductivity of the catalyst is significantly boosted, enhancing its catalytic performance. The resulting hybrid, ZFSMS, exhibits remarkable electrocatalytic efficiency with minimal overpotentials. Specifically, overpotentials of 130 mV and 220 mV are recorded for the oxygen evolution reaction at 20 mA cm-2 and 50 mA cm-2, respectively. Moreover, for the hydrogen evolution reaction, overpotentials of 145 mV and 257 mV are observed at 10 mA cm-2 and 40 mA cm-2, respectively, in a 1.0 M potassium hydroxide solution. Notably, the ZFSMSbased electrolyzer operates at a low voltage of 1.5 V at 10 mA cm-2, underscoring its efficiency in facilitating electrochemical hydrogen generation. This catalyst good candidate for advancing green hydrogen production, contributing to the progress of sustainable and clean hydrogen fuel production methods.
引用
收藏
页码:492 / 501
页数:10
相关论文
共 50 条
[1]   Optimizing diamond's electronic band structure via defect engineering for enhanced HER and OER catalysis [J].
Abodouh, Mohamed M. ;
Khedr, Ghada E. ;
Allam, Nageh K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 61 :922-933
[2]   Enhanced hydrogen generation via overall water splitting using novel MoS2-BN nanoflowers assembled TiO2 ternary heterostructures [J].
Ali, Syed Asim ;
Ahmad, Tokeer .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (58) :22044-22059
[3]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[4]   A highly active hydrogen evolution electrocatalyst based on a cobalt-nickel sulfide composite electrode [J].
Ansovini, Davide ;
Lee, Coryl Jing Jun ;
Chua, Chin Sheng ;
Ong, Lay Ting ;
Tan, Hui Ru ;
Webb, William R. ;
Raja, Robert ;
Lim, Yee-Fun .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) :9744-9749
[5]   Metal-organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors [J].
Bahaa, Ahmed ;
Balamurugan, Jayaraman ;
Kim, Nam Hoon ;
Lee, Joong Hee .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (14) :8620-8632
[6]   Rapid in situ synthesis of sulfur-doped transition-metal oxyhydroxides by room temperature impregnation for advanced electrocatalytic splitting water [J].
Bao, Wentao ;
Yang, Jinfeng ;
Yan, Wenxia ;
Tang, Ying ;
Yang, Zhen ;
Zhao, Yunxia ;
Wang, Gang ;
Yang, Shengchao ;
Yu, Feng .
JOURNAL OF POWER SOURCES, 2023, 580
[7]   Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting [J].
Cao, Li-Ming ;
Zhang, Jia ;
Ding, Li-Wen ;
Du, Zi-Yi ;
He, Chun-Ting .
JOURNAL OF ENERGY CHEMISTRY, 2022, 68 :494-520
[8]   Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting [J].
Chaudhari, Nitin K. ;
Jin, Haneul ;
Kim, Byeongyoon ;
Lee, Kwangyeol .
NANOSCALE, 2017, 9 (34) :12231-12247
[9]   Electronic structure reconfiguration of nickel-cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting [J].
Chen, Kai ;
Cao, Yong-Hua ;
Yadav, Sunny ;
Kim, Gyu-Cheol ;
Han, Zheng ;
Wang, Wenmeng ;
Zhang, Wei-Jin ;
Dao, Vandung ;
Lee, In-Hwan .
CHEMICAL ENGINEERING JOURNAL, 2023, 463
[10]   Hierarchical copper cobalt sulfides nanowire arrays for high-performance asymmetric supercapacitors [J].
Du, Jialiang ;
Yan, Qing ;
Li, Yiju ;
Cheng, Kui ;
Ye, Ke ;
Zhu, Kai ;
Yan, Jun ;
Cao, Dianxue ;
Zhang, Xianfa ;
Wang, Guiling .
APPLIED SURFACE SCIENCE, 2019, 487 :198-205