Internet-of-Vehicles Network for CO2 Emission Estimation and Reinforcement Learning-Based Emission Reduction

被引:2
作者
Devi, Archana Sulekha [1 ]
Britto, Milagres Mary John [1 ]
Fang, Zian [2 ]
Gopan, Renjith [1 ]
Jassal, Pawan Singh [1 ]
Qazzaz, Mohammed M. H. [2 ,3 ]
Rajbhandari, Sujan [4 ]
Al-Sallami, Farah Mahdi [2 ,3 ]
机构
[1] Coventry Univ, Sch Future Transport Engn, Coventry CV1 5FB, England
[2] Univ Leeds, Sch Elect & Elect Engn, Leeds LS2 9JT, England
[3] Univ Leeds, ICaPNet, Leeds LS2 9JT, England
[4] Univ Strathclyde, Inst Photon, Glasgow G1 1RD, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Climate change; Internet of Vehicles; Carbon emissions; Traffic control; Reinforcement learning; Air pollution; Global warming; Real-time systems; Emission estimation; CO2; emissions; Internet-of-Vehicles; emission reduction; reinforcement learning; traffic management; TRAFFIC FLOW; MODEL; MOBILITY;
D O I
10.1109/ACCESS.2024.3441949
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The escalating impact of vehicular Carbon Dioxide (CO2) emissions on air pollution, global warming, and climate change necessitates innovative solutions. This paper proposes a comprehensive Internet-of-Vehicles (IoV) network for real-time CO2 emissions estimation and reduction. We implemented and tested an on-board device that estimates the vehicle's emissions and transmits the data to the network. The estimated CO2 emissions values are close to the standard emissions values of petrol and diesel vehicles, accounting for expected discrepancies due to vehicles' age and loading. The network uses the aggregate emissions readings to inform the Reinforcement Learning (RL) algorithm, enabling the prediction of optimal speed limits to minimize vehicular emissions. The results demonstrate that employing the RL algorithm can achieve an average CO2 emissions reduction of 11 kg/h to 150 kg/h.
引用
收藏
页码:110681 / 110690
页数:10
相关论文
共 49 条
[1]   Reinforcement Learning for Intelligent Sensor Virtualization and Provisioning in Internet of Vehicles (IoV) [J].
Abbes, Slim ;
Rekhis, Slim .
IEEE ACCESS, 2024, 12 :54352-54370
[2]   Reinforcement learning for True Adaptive traffic signal control [J].
Abdulhai, B ;
Pringle, R ;
Karakoulas, GJ .
JOURNAL OF TRANSPORTATION ENGINEERING, 2003, 129 (03) :278-285
[3]  
Ahmed A., 2024, P INT WIR COMM MOB C, P1716
[4]   A Scalable and Energy-Efficient LoRaWAN-Based Geofencing System for Remote Monitoring of Vulnerable Communities [J].
Ahmed, Sheikh Tareq ;
Ahmed, Ahmed Abdelmoamen ;
Annamalai, Annamalai ;
Chouikha, Mohamed F. .
IEEE ACCESS, 2024, 12 :48540-48554
[5]  
Akcelik R., 2003, 25 C AUSTR I TRANSPO
[6]   Predicting CO2 Emissions from Traffic Vehicles for Sustainable and Smart Environment Using a Deep Learning Model [J].
Al-Nefaie, Abdullah H. H. ;
Aldhyani, Theyazn H. H. .
SUSTAINABILITY, 2023, 15 (09)
[7]   Traffic management approaches using machine learning and deep learning techniques: A survey [J].
Almukhalfi, Hanan ;
Noor, Ayman ;
Noor, Talal H. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[8]  
[Anonymous], 2020, The European environment - State and outlook 2020: Knowledge for transition to a sustainable Europe
[9]  
[Anonymous], 2021, Press release
[10]   LoRaline: A Critical Message Passing Line of Communication for Anomaly Mapping in IoV Systems [J].
Bidollahkhani, Michael ;
Dakkak, Omar ;
Alajeeli, Adnan Saher Mohammad ;
Kim, Byung-Seo .
IEEE ACCESS, 2023, 11 :18107-18120