Machine learning model for osteoporosis diagnosis based on bone turnover markers

被引:2
作者
Baik, Seung Min [1 ,2 ]
Kwon, Hi Jeong [3 ]
Kim, Yeongsic [3 ]
Lee, Jehoon [4 ]
Park, Young Hoon [5 ]
Park, Dong Jin [4 ]
机构
[1] Ewha Womans Univ, Coll Med, Dept Surg, Div Crit Care Med,Mokdong Hosp, Seoul, South Korea
[2] Korea Univ, Dept Surg, Coll Med, Seoul, South Korea
[3] Catholic Univ Korea, Dept Lab Med, Coll Med, Seoul, South Korea
[4] Catholic Univ Korea, Eunpyeong St Marys Hosp, Coll Med, Dept Lab Med, 1021 Tongil Ro, Seoul 03312, South Korea
[5] Ewha Womans Univ, Coll Med, Dept Internal Med, Div Hematol,Mokdong Hosp, Seoul, South Korea
关键词
artificial intelligence; bone turnover marker; ensemble technique; machine learning; osteoporosis diagnosis; MINERAL DENSITY; FRACTURE;
D O I
10.1177/14604582241270778
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
To assess the diagnostic utility of bone turnover markers (BTMs) and demographic variables for identifying individuals with osteoporosis. A cross-sectional study involving 280 participants was conducted. Serum BTM values were obtained from 88 patients with osteoporosis and 192 controls without osteoporosis. Six machine learning models, including extreme gradient boosting (XGBoost), light gradient boosting machine (LGBM), CatBoost, random forest, support vector machine, and k-nearest neighbors, were employed to evaluate osteoporosis diagnosis. The performance measures included the area under the receiver operating characteristic curve (AUROC), F1-score, and accuracy. After AUROC optimization, LGBM exhibited the highest AUROC of 0.706. Post F1-score optimization, LGBM's F1-score was improved from 0.50 to 0.65. Combining the top three optimized models (LGBM, XGBoost, and CatBoost) resulted in an AUROC of 0.706, an F1-score of 0.65, and an accuracy of 0.73. BTMs, along with age and sex, were found to contribute significantly to osteoporosis diagnosis. This study demonstrates the potential of machine learning models utilizing BTMs and demographic variables for diagnosing preexisting osteoporosis. The findings highlight the clinical relevance of accessible clinical data in osteoporosis assessment, providing a promising tool for early diagnosis and management.
引用
收藏
页数:15
相关论文
共 50 条
[41]   Advances in bone turnover markers [J].
Di Medio, Lisa ;
Brandi, Maria Luisa .
ADVANCES IN CLINICAL CHEMISTRY, VOL 105, 2021, 105 :101-140
[42]   Osteoporosis Prediction for Trabecular Bone using Machine Learning: A Review [J].
Anam, Marrium ;
Ponnusamy, Vasaki A. p ;
Hussain, Muzammil ;
Nadeem, Muhammad Waqas ;
Javed, Mazhar ;
Goh, Hock Guan ;
Qadeer, Sadia .
CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (01) :89-105
[43]   Comparative Effects of Teriparatide and Strontium Ranelate on Bone Biopsies and Biochemical Markers of Bone Turnover in Postmenopausal Women With Osteoporosis [J].
Recker, Robert R. ;
Marin, Fernando ;
Ish-Shalom, Sophia ;
Moericke, Ruediger ;
Hawkins, Federico ;
Kapetanos, Georgios ;
de la Pena, Maria P. ;
Kekow, Joern ;
Farrerons, Jordi ;
Sanz, Beatriz ;
Oertel, Heide ;
Stepan, Jan .
JOURNAL OF BONE AND MINERAL RESEARCH, 2009, 24 (08) :1358-1368
[44]   ASSESSMENT OF BONE TURNOVER MARKERS PRIOR TO DENTAL IMPLANT PLACEMENT FOR OSTEOPOROSIS PATIENT- A CASE-CONTROL STUDY [J].
Karunakaran, Nirubama ;
Maiti, Subhabrata ;
Jayaraman, Selvaraj ;
Paulraj, Jessy .
ANNALS OF DENTAL SPECIALTY, 2023, 11 (02) :57-61
[45]   Bone markers and osteoporosis therapy [J].
Bandeira, Francisco ;
Costa, Aline G. ;
Soares Filho, Manoel Aderson ;
Pimentel, Larissa ;
Lima, Lourena ;
Bilezikian, John P. .
ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA, 2014, 58 (05) :504-513
[46]   Optimization of a Dynamic Fault Diagnosis Model Based on Machine Learning [J].
Zhang, Shigang ;
Luo, Xu ;
Yang, Yongmin ;
Wang, Long ;
Zhang, Xiaofei .
IEEE ACCESS, 2018, 6 :65065-65077
[47]   Fracture-induced changes in bone turnover:: a potential confounder in the use of biochemical markers in osteoporosis [J].
Åkesson, K ;
Käkönen, SM ;
Josefsson, PO ;
Karlsson, MK ;
Obrant, KJ ;
Pettersson, K .
JOURNAL OF BONE AND MINERAL METABOLISM, 2005, 23 (01) :30-35
[48]   Clinical Utility of Serum Bone Turnover Markers in Postmenopausal Osteoporosis Therapy Monitoring: A Systematic Review [J].
Funck-Brentano, Thomas ;
Biver, Emmanuel ;
Chopin, Florence ;
Bouvard, Beatrice ;
Coiffier, Guillaume ;
Souberbielle, Jean-Claude ;
Garnero, Patrick ;
Roux, Christian .
SEMINARS IN ARTHRITIS AND RHEUMATISM, 2011, 41 (02) :157-169
[49]   Urinary Bone Turnover Markers as Target Indicators for Monitoring Bisphosphonate Drug Treatment in the Management of Osteoporosis [J].
Kwon, SoHyea ;
Wang, Anne H. ;
Sadowski, Cheryl A. ;
Yuksel, Nese ;
Doschak, Michael R. .
CURRENT DRUG TARGETS, 2018, 19 (05) :451-459
[50]   Fracture-induced changes in bone turnover: a potential confounder in the use of biochemical markers in osteoporosis [J].
Kristina Åkesson ;
Sanna-Maria Käkönen ;
Per Olof Josefsson ;
Magnus K. Karlsson ;
Karl J. Obrant ;
Kim Pettersson .
Journal of Bone and Mineral Metabolism, 2005, 23 :30-35