Simultaneous spectral illumination of microplates for high-throughput optogenetics and photobiology

被引:0
作者
Vogt, Arend [1 ,2 ,3 ,4 ]
Paulat, Raik [1 ,2 ,3 ,6 ]
Parthier, Daniel [2 ,3 ,4 ]
Just, Verena [1 ,3 ]
Szczepek, Michal [2 ,3 ,7 ]
Scheerer, Patrick [2 ,3 ,7 ]
Xu, Qianzhao [8 ]
Moeglich, Andreas [8 ]
Schmitz, Dietmar [2 ,3 ,4 ]
Rost, Benjamin R. [2 ,3 ,4 ,5 ]
Wenger, Nikolaus [1 ,2 ,3 ]
机构
[1] Charite Univ Med Berlin, Dept Neurol Expt Neurol, Translat Neuromodulat Grp, D-10117 Berlin, Germany
[2] Free Univ Berlin, D-10117 Berlin, Germany
[3] Humboldt Univ, D-10117 Berlin, Germany
[4] Charite Univ Med Berlin, Neurosci Res Ctr, D-10117 Berlin, Germany
[5] German Ctr Neurodegenerat Dis DZNE, D-10117 Berlin, Germany
[6] HTW Berlin Univ Appl Sci, Fac Energy & Informat, D-10318 Berlin, Germany
[7] Charite Univ Med Berlin, Inst Med Phys & Biophys, Grp Struct Biol Cellular Signaling, D-10117 Berlin, Germany
[8] Univ Bayreuth, Dept Biochem, D-95447 Bayreuth, Germany
关键词
action spectra; cyclic mononucleotides; GPCR; photoactivated nucleotidyl cyclases; rhodopsin; signal transduction; CRYSTAL-STRUCTURE; ADENYLYL-CYCLASE; BOVINE RHODOPSIN; BINDING-PROTEIN; LIGHT; MECHANISM; DESIGN; OPSIN; GENE; CAMP;
D O I
10.1515/hsz-2023-0205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The biophysical characterization and engineering of optogenetic tools and photobiological systems has been hampered by the lack of efficient methods for spectral illumination of microplates for high-throughput analysis of action spectra. Current methods to determine action spectra only allow the sequential spectral illumination of individual wells. Here we present the open-source RainbowCap-system, which combines LEDs and optical filters in a standard 96-well microplate format for simultaneous and spectrally defined illumination. The RainbowCap provides equal photon flux for each wavelength, with the output of the LEDs narrowed by optical bandpass filters. We validated the RainbowCap for photoactivatable G protein-coupled receptors (opto-GPCRs) and enzymes for the control of intracellular downstream signaling. The simultaneous, spectrally defined illumination provides minimal interruption during time-series measurements, while resolving 10 nm differences in the action spectra of optogenetic proteins under identical experimental conditions. The RainbowCap is also suitable for studying the spectral dependence of light-regulated gene expression in bacteria, which requires illumination over several hours. In summary, the RainbowCap provides high-throughput spectral illumination of microplates, while its modular, customizable design allows easy adaptation to a wide range of optogenetic and photobiological applications.
引用
收藏
页码:751 / 763
页数:13
相关论文
共 50 条
  • [31] Aurora: a fluorescent deoxyribozyme for high-throughput screening
    Volek, Martin
    Kurfurst, Jaroslav
    Drexler, Matus
    Svoboda, Michal
    Srb, Pavel
    Veverka, Vaclav
    Curtis, Edward A.
    NUCLEIC ACIDS RESEARCH, 2024, 52 (15) : 9049 - 9061
  • [32] High-Throughput Screening Technologies for Botulinum Neurotoxins
    Bompiani, Kristin M.
    Dickerson, Tobin J.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2014, 14 (18) : 2062 - 2080
  • [33] High-Throughput Screening for Bacterial Glycosyltransferase Inhibitors
    El Qaidi, Samir
    Zhu, Congrui
    McDonald, Peter
    Roy, Anuradha
    Maity, Pradip Kumar
    Rane, Digamber
    Perera, Chamani
    Hardwidge, Philip R.
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2018, 8
  • [34] High-Throughput Automation in Chemical Process Development
    Selekman, Joshua A.
    Qiu, Jun
    Tran, Kristy
    Stevens, Jason
    Rosso, Victor
    Simmons, Eric
    Xiao, Yi
    Janey, Jacob
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 8, 2017, 8 : 525 - 547
  • [35] High-throughput system for the thermostability analysis of proteins
    Ito, Sae
    Matsunaga, Ryo
    Nakakido, Makoto
    Komura, Daisuke
    Katoh, Hiroto
    Ishikawa, Shumpei
    Tsumoto, Kouhei
    PROTEIN SCIENCE, 2024, 33 (06)
  • [36] Homology Models in Docking and High-Throughput Docking
    Cavasotto, Claudio N.
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2011, 11 (12) : 1528 - 1534
  • [37] Functional annotation of lncRNA in high-throughput screening
    Yip, Chi Wai
    Sivaraman, Divya M.
    Prabhu, Anika V.
    Shin, Jay W.
    NON-CODING GENOME, 2021, 65 (04): : 761 - 773
  • [38] Optimization and High-Throughput Screening of Antimicrobial Peptides
    Blondelle, Sylvie E.
    Lohner, Karl
    CURRENT PHARMACEUTICAL DESIGN, 2010, 16 (28) : 3204 - 3211
  • [39] A constitutive expression system for high-throughput screening
    Aerts, Dirk
    Verhaeghe, Tom
    De Mey, Marjan
    Desmet, Tom
    Soetaert, Wim
    ENGINEERING IN LIFE SCIENCES, 2011, 11 (01): : 10 - 19
  • [40] The high-throughput highway to computational materials design
    Curtarolo, Stefano
    Hart, Gus L. W.
    Nardelli, Marco Buongiorno
    Mingo, Natalio
    Sanvito, Stefano
    Levy, Ohad
    NATURE MATERIALS, 2013, 12 (03) : 191 - 201