Hopf Monoids of Ordered Simplicial Complexes

被引:0
作者
Castillo, Federico [1 ]
Martin, Jeremy L. [2 ]
Samper, Jose A. [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Matemat, Santiago, Chile
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
LAPLACIANS; ALGEBRAS; PRODUCT;
D O I
10.1093/imrn/rnae201
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Hopf classes: families of pure ordered simplicial complexes that give rise to Hopf monoids under join and deletion/contraction. The prototypical Hopf class is the family of ordered matroids. The idea of a Hopf class leads to a systematic study of simplicial complexes related to matroids, including shifted complexes and broken-circuit complexes. We compute the Hopf antipodes in two cases: facet-initial complexes (which generalize shifted complexes) and unbounded ordered matroids. The latter calculation uses the topological method of Aguiar and Ardila, complicated by certain auxiliary simplicial complexes that we call Scrope complexes, whose Euler characteristics control the coefficients of the antipode. The resulting antipode formula is multiplicity-free and cancellation-free.
引用
收藏
页码:13312 / 13351
页数:40
相关论文
共 50 条
[1]  
Aguiar M, 2020, ENCYCLOP MATH APPL, V173, DOI 10.1017/9781108863117
[2]   Combinatorial Hopf algebras and generalized Dehn-Sommerville relations [J].
Aguiar, M ;
Bergeron, N ;
Sottile, F .
COMPOSITIO MATHEMATICA, 2006, 142 (01) :1-30
[3]  
Aguiar M., 2017, Topics in Hyperplane Arrangements
[4]   Hopf monoids and generalized permutahedra Introduction [J].
Aguiar, Marcelo ;
Ardila, Federico .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 289 (1437) :1-+
[5]   On the Hadamard Product of Hopf Monoids [J].
Aguiar, Marcelo ;
Mahajan, Swapneel .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03) :481-504
[6]   Valuations and the Hopf Monoid of Generalized Permutahedra [J].
Ardila, Federico ;
Sanchez, Mario .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (05) :4149-4224
[7]   LAGRANGIAN GEOMETRY OF MATROIDS [J].
Ardila, Federico ;
Denham, Graham ;
Huh, June .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 36 (03) :727-794
[8]   POSITROIDS AND NON-CROSSING PARTITIONS [J].
Ardila, Federico ;
Rincon, Felipe ;
Williams, Lauren .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (01) :337-363
[9]  
Babson E, 2006, ELECTRON J COMB, V11
[10]  
Bastidas J., 2021, ALGEBR COMB, V4, P909, DOI [10.5802/alco.185, DOI 10.5802/ALCO.185]