Moments of autocorrelation demerit factors of binary sequences

被引:4
作者
Katz, Daniel J. [1 ]
Ramirez, Miriam E. [1 ]
机构
[1] Calif State Univ, Dept Math, Northridge, CA 91330 USA
基金
美国国家科学基金会;
关键词
Binary sequence; Autocorrelation; Merit factor; Demerit factor; Moments;
D O I
10.1007/s10623-024-01482-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Sequences with low aperiodic autocorrelation are used in communications and remote sensing for synchronization and ranging. The autocorrelation demerit factor of a sequence is the sum of the squared magnitudes of its autocorrelation values at every nonzero shift when we normalize the sequence to have unit Euclidean length. The merit factor, introduced by Golay, is the reciprocal of the demerit factor. We consider the uniform probability measure on the 2 & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2<^>\ell $$\end{document} binary sequences of length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} and investigate the distribution of the demerit factors of these sequences. Sarwate and Jedwab have respectively calculated the mean and variance of this distribution. We develop new combinatorial techniques to calculate the pth central moment of the demerit factor for binary sequences of length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. These techniques prove that for p >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\ge 2$$\end{document} and & ell;>= 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \ge 4$$\end{document}, all the central moments are strictly positive. For any given p, one may use the technique to obtain an exact formula for the pth central moment of the demerit factor as a function of the length & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}. Jedwab's formula for variance is confirmed by our technique with a short calculation, and we go beyond previous results by also deriving an exact formula for the skewness. A computer-assisted application of our method also obtains exact formulas for the kurtosis, which we report here, as well as the fifth central moment.
引用
收藏
页码:1021 / 1065
页数:45
相关论文
共 16 条
[1]  
Aupetit S, 2004, LECT NOTES COMPUT SC, V2936, P39
[2]  
Beck Matthias., 2015, Computing the Continuous Discretely, DOI [10.1007/978-1-4939-2969-6, DOI 10.1007/978-1-4939-2969-6]
[3]   The expected Lp norm of random polynomials [J].
Borwein, P ;
Lockhart, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (05) :1463-1472
[4]  
brego BM., 2016, ELECTRON J COMB, V23, pP4.39, DOI DOI 10.37236/4972
[5]  
Free Software Foundation Inc., 2020, GNU MP VERSION 621
[6]   HYBRID LOW AUTOCORRELATION SEQUENCES [J].
GOLAY, MJE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1975, 21 (04) :460-462
[7]   THE MERIT FACTOR OF LONG LOW AUTO-CORRELATION BINARY SEQUENCES [J].
GOLAY, MJE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (03) :543-549
[9]  
Golomb S. W., 2005, Signal Design for Good Correlation for Wireless Communication, Cryptography, Radar, DOI DOI 10.1017/CBO9780511546907
[10]  
Golomb S.W., 1967, PORTIONS