RHM: Novel Graph Convolution Based on Non-Local Network for SQL Injection Identification

被引:0
作者
Nguyen, Duc-Chinh [1 ]
Ha, Manh-Hung [1 ]
Chen, Oscal Tzyh-Chiang [1 ,2 ]
Do, Manh-Tuan [1 ]
机构
[1] Vietnam Natl Univ, Int Sch, Fac Appl Sci, Hanoi 100000, Vietnam
[2] Natl Chung Cheng Univ, Dept Elect Engn, Chiayi 62102, Taiwan
来源
2024 IEEE SYMPOSIUM ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ISIEA 2024 | 2024年
关键词
SQL injection; graph convolution; non-local network; deep learning; refined highway;
D O I
10.1109/ISIEA61920.2024.10607303
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Machine learning and deep learning have long been prominent choices in the scientific research community and practical applications as effective approaches to combat Structured Query Language (SQL) injection attacks. In this study, we proposed a novel graph convolution based on nonlocal network named Refined Highway Modul (RHM) for SQL injection. Initially, we develop a procedure to transform SQL queries into a graph structure based on SQL indentation to maximize the exploitation of relationships between information blocks. A crucial component of the proposed model is a modified version of the non-local network with a graph convolutional layer, referred to as the refined highway module, enabling direct processing of graphic data. By focusing on the relationships between components in SQL statements, this model is expected to efficiently support the classification of SQL injections. Paticular, SQL statements are restructured into graphs, leveraging information propagation mechanisms to disseminate information to neighboring nodes before mapping feature relationships at the overall graph level. To demonstrate the efficacy of the proposed model, we compare it with a traditional non-local module under the same conditions. Experimental results indicate that our model utilizing a graph structure achieves superior performance across all evaluation metrics compared to the original one, with an accuracy of 99.91%, the best of our knowledge. Thus, the suggested model for safeguarding against SQL injection attacks can prevent potentially severe consequences.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Cross Spectral and Spatial Scale Non-local Attention-Based Unsupervised Pansharpening Network
    Li, Shuangliang
    Tian, Yugang
    Wang, Cheng
    Wu, Hongxian
    Zheng, Shaolan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 4858 - 4870
  • [22] Polarimetric image denoising via non-local based cube matching convolutional neural network
    Liu, Hedong
    Li, Xiaobo
    Cheng, Zhenzhou
    Liu, Tiegen
    Zhai, Jingsheng
    Hu, Haofeng
    OPTICS AND LASERS IN ENGINEERING, 2025, 184
  • [23] SPGCN: ground filtering method based on superpoint graph convolution neural network for vehicle LiDAR
    Huang, Siyuan
    Liu, Limin
    Dong, Jian
    Fu, Xiongjun
    Huang, Fuyu
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [24] Skeleton-Based Action Recognition with Improved Graph Convolution Network
    Yang, Xuqi
    Zhang, Jia
    Qin, Rong
    Su, Yunyu
    Qiu, Shuting
    Yu, Jintian
    Ge, Yongxin
    BIOMETRIC RECOGNITION (CCBR 2021), 2021, 12878 : 31 - 38
  • [25] Spatiotemporal Attention-Based Graph Convolution Network for Segment-Level Traffic Prediction
    Li, Duo
    Lasenby, Joan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 8337 - 8345
  • [26] Long-term traffic forecasting based on adaptive graph cross strided convolution network
    Li, Zhao
    Zhang, Yong
    Guo, Da
    Zhou, Xu
    Wang, Xing
    Zhu, Lin
    APPLIED INTELLIGENCE, 2023, 53 (04) : 3672 - 3686
  • [27] VIGCN: an isotropic natural image stitching network based on graph convolution
    Li, Yuheng
    Guo, Fan
    Wu, Zhihu
    Tang, Jin
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19128 - 19142
  • [28] Rolling Bearing Fault Diagnosis Based on Graph Convolution Neural Network
    Zhang, Yin
    Li, Hui
    INTELLIGENT COMPUTING THEORIES AND APPLICATION (ICIC 2022), PT I, 2022, 13393 : 195 - 207
  • [29] VIGCN: an isotropic natural image stitching network based on graph convolution
    Yuheng Li
    Fan Guo
    Zhihu Wu
    Jin Tang
    Applied Intelligence, 2023, 53 : 19128 - 19142
  • [30] Intricate Supply Chain Demand Forecasting Based on Graph Convolution Network
    Niu, Tianyu
    Zhang, Heng
    Yan, Xingyou
    Miao, Qiang
    SUSTAINABILITY, 2024, 16 (21)