Molecular regulations of ethylene signaling in plant salt stress responses

被引:1
|
作者
Zhang, Xin [1 ]
Sun, Jiawei [2 ]
Dong, Chun-Hai [2 ]
机构
[1] Jinan Presch Educ Coll, Jinan 250307, Peoples R China
[2] Qingdao Agr Univ, Coll Life Sci, Qingdao 266109, Peoples R China
来源
PLANT STRESS | 2024年 / 14卷
关键词
Ethylene; Salt stress; Tolerance; Response; Molecular mechanism; TRANSCRIPTION FACTOR; ENHANCES SALT; INDUCED INHIBITION; SEED-GERMINATION; REACTIVE OXYGEN; TOLERANCE; ARABIDOPSIS; ETR1; RICE; GENE;
D O I
10.1016/j.stress.2024.100583
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethylene serves a pivotal function in plant growth, development, and stress responses. Initially received by receptors, ethylene signals the journey to nuclear transcription factors via downstream elements, prompting the expression of relevant genes and engaging in diverse physiological and biochemical processes. Over the preceding decades, the bulk of research efforts concentrated on unraveling the components of ethylene signaling and deciphering their molecular regulations. Remarkably less attention, however, was devoted to scrutinizing the role of ethylene signaling in fostering salt stress tolerance in plants. Crucial questions, such as whether ethylene positively or negatively impacts salt tolerance, remain insufficiently explored. Similarly, the precise role of ethylene signaling in orchestrating the SOS pathway for salt tolerance is not comprehensively understood. Hence, this article seeks to narrow this knowledge gap by exploring the latest breakthroughs in comprehending how ethylene signaling contributes to plants' responses when encountering salt stress. It will explore ethylene synthesis's role, the functions of ethylene signaling components, and the intricate molecular interplay between ethylene signaling and other pathways during salt stress responses. These studies not only deepen our comprehension of ethylene's involvement in salt stress responses but also offer valuable insights for leveraging this knowledge to develop new plant varieties resilient to salt stress.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Ethylene receptor signaling and plant salt-stress responses
    Cao, W. H.
    Liu, J.
    Chen, T.
    Cao, Y. R.
    He, X. J.
    Mu, R. L.
    Zhou, H. L.
    Xie, C.
    Y, Chen S.
    Zhang, J. S.
    ADVANCES IN PLANT ETHYLENE RESEARCH, 2007, : 333 - +
  • [2] Genome-Wide Transcriptomic and Proteomic Exploration of Molecular Regulations in Quinoa Responses to Ethylene and Salt Stress
    Ma, Qian
    Su, Chunxue
    Dong, Chun-Hai
    PLANTS-BASEL, 2021, 10 (11):
  • [3] Ethylene signaling and regulation in plant growth and stress responses
    Feifei Wang
    Xiankui Cui
    Yue Sun
    Chun-Hai Dong
    Plant Cell Reports, 2013, 32 : 1099 - 1109
  • [4] Modulation of ethylene responses affects plant salt-stress responses
    Cao, Wan-Hong
    Liu, Jun
    He, Xin-Jian
    Mu, Rui-Ling
    Zhou, Hua-Lin
    Chen, Shou-Yi
    Zhang, Jin-Song
    PLANT PHYSIOLOGY, 2007, 143 (02) : 707 - 719
  • [5] Ethylene signaling and regulation in plant growth and stress responses
    Wang, Feifei
    Cui, Xiankui
    Sun, Yue
    Dong, Chun-Hai
    PLANT CELL REPORTS, 2013, 32 (07) : 1099 - 1109
  • [6] Molecular Mechanisms of Plant Responses to Salt Stress
    Ma, Liang
    Liu, Xiaohong
    Lv, Wanjia
    Yang, Yongqing
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [7] Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses
    Wang, Xiaoyi
    Wen, Hongyi
    Suprun, Andrey
    Zhu, Hongliang
    PLANTS-BASEL, 2025, 14 (03):
  • [8] Revisiting the role of light signaling in plant responses to salt stress
    Peng, Yinxia
    Zhu, Haiyan
    Wang, Yiting
    Kang, Jin
    Hu, Lixia
    Li, Ling
    Zhu, Kangyou
    Yan, Jiarong
    Bu, Xin
    Wang, Xiujie
    Zhang, Ying
    Sun, Xin
    Ahammed, Golam Jalal
    Jiang, Chao
    Meng, Sida
    Liu, Yufeng
    Sun, Zhouping
    Qi, Mingfang
    Li, Tianlai
    Wang, Feng
    HORTICULTURE RESEARCH, 2025, 12 (01)
  • [9] Ethylene and plant responses to stress
    Morgan, PW
    Drew, MC
    PHYSIOLOGIA PLANTARUM, 1997, 100 (03) : 620 - 630
  • [10] Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions
    Hasanuzzaman, Mirza
    Fujita, Masayuki
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (09)