Effects of Bacillus amyloliquefaciens QST713 on Mineral Nutrient Utilization of Alfalfa (Medicago sativa L.) under Drought Stress

被引:0
作者
Han, Lingjuan [1 ]
Hu, Lele [1 ]
Lv, Yuanyuan [1 ]
Li, Yixuan [1 ]
Ma, Zheng [1 ]
Li, Bin [2 ]
Gao, Peng [1 ]
Liang, Yinping [1 ]
Zhao, Xiang [1 ]
机构
[1] Shanxi Agr Univ, Coll Grassland Sci, Jinzhong 030801, Peoples R China
[2] Shanxi Agr Univ, Coll Hort, Collaborat Innovat Ctr Improving Qual & Increase P, Jinzhong 030801, Peoples R China
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 08期
关键词
alfalfa; Bacillus amyloliquefaciens QST713; drought stress; mineral nutrients; root morphology; GROWTH-PROMOTING RHIZOBACTERIA; PLANT-GROWTH; YIELD; TOLERANCE; TRANSPORT; DEFICIT; PGPR; IRON;
D O I
10.3390/agronomy14081793
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought stress is one of the major impediments to plant growth. Plant growth-promoting rhizobacteria (PGPR) can mitigate moisture stress in plants by increasing the ability of plant nutrient uptake and transport. In this study, we investigated the root phenotype, mineral nutrients (in leaves, roots, and soil), soil pH, water saturation deficit (WSD), free water content (FWC), and bound water content (BWC) of leaves of two alfalfa varieties, 'Galalxie Max' (drought-tolerant) and 'Saidi 7' (drought-sensitive), in the presence or absence of Bacillus amyloliquefaciens QST713 under drought stress conditions. The results showed that water stress negatively affected both cultivar root morphology (total root length, average diameter, total surface area, and volume) and the contents of K and Fe in leaves, roots, and soil. It also reduced the Mn and Zn contents in the soil while increasing the content of Na in the leaves and soil. Additionally, alfalfa plants under drought stress exhibited higher levels of soil pH, WSD, and BWC but lower contents of FWC and ratios of BWC/FWC in the leaves of both cultivars. However, QST713 application significantly enhanced the total root length, average root diameter, and the contents of K and Fe in alfalfa leaves, roots, and soil, as well as the BWC/FWC ratio in leaves under drought stress conditions. A significant reduction in the Na content was detected in QST713-treated alfalfa leaves and soil under drought stress. Furthermore, QST713 application noticeably decreased soil pH and WSD. The current findings showed that QST713 enhanced the water stress tolerance of alfalfa plants by ameliorating root morphology, reducing soil pH, and improving the BWC/FWC ratio, consequently promoting the accumulation of mineral nutrients (mainly K and Fe). Overall, Bacillus amyloliquefaciens QST713 can serve as a potential green fertilizer in sustainable agriculture to improve soil nutrients and enhance plant production under increasing drought conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Effects of Bacillus amyloliquefaciens on Volatile Components and Nutrient Element Contents of Mentha piperita L. Grown under Salt Stress
    Uner, Songiil Tugba
    Turgut, Ashhan Cesur
    BIORESOURCES, 2024, 19 (02): : 2826 - 2841
  • [32] Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress
    Zhao, Ying
    Wei, Xiaohong
    Ji, Xiangzhuo
    Ma, Wenjing
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 141 : 456 - 465
  • [33] Assessing the drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) genotypes under arid conditions
    Benabderrahim, M. A.
    Hamza, H.
    Haddad, M.
    Ferchichi, A.
    PLANT BIOSYSTEMS, 2015, 149 (02): : 395 - 403
  • [34] Screening of alfalfa (Medicago sativa L.) cultivars for drought tolerance at germination stage and seedling growth
    Khodarahmpour, Zahra
    RESEARCH ON CROPS, 2013, 14 (02) : 571 - 575
  • [35] Evaluation of Growth, Physiological, and Biochemical Responses of Different Medicago sativa L. Varieties Under Drought Stress
    Wang, Yang
    Long, Sisi
    Zhang, Jiyuan
    Wang, Puchang
    Zhao, Lili
    PLANTS-BASEL, 2025, 14 (05):
  • [36] THE EFFECTS OF SECONDARY TREATMENT ON NODULATION OF ALFALFA (MEDICAGO SATIVA L.) AND NUTRIENTS SUPPLY IN DOMESTIC WASTEWATER
    Arvas, O.
    Yagan, F.
    Yesilova, A.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2022, 20 (06): : 4951 - 4969
  • [37] Effects of Exogenous 5-AminolevuliniC Acid (5-ALA) on Alfalfa (Medicago sativa L.) under NaCl-induced Salinity Stress
    Xu, Nan
    Chen, Zhao
    Niu, Junpeng
    Niu, Kaijun
    Khan, Zulfikar
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025, 25 (01) : 478 - 494
  • [38] Effects of Exogenous 5-AminolevuliniC Acid (5-ALA) on Alfalfa (Medicago sativa L.) under NaCl-induced Salinity Stress
    Xu, Nan
    Chen, Zhao
    Niu, Junpeng
    Niu, Kaijun
    Khan, Zulfikar
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024,
  • [39] Exogenous melatonin promotes the growth of alfalfa (Medicago sativa L.) under NaCl stress through multiple pathways
    Niu, Junpeng
    Chen, Zhao
    Guo, Zhipeng
    Xu, Nan
    Sui, Xin
    Roy, Momi
    Kareem, Hafiz Abdul
    Ul Hassan, Mahmood
    Cui, Jian
    Wang, Quanzhen
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 242
  • [40] Effect of salt stress on Growth and Ion accumulation of alfalfa (Medicago sativa L.) cultivars
    Ashrafi, Ensiye
    Razmjoo, Jamshid
    Zahedi, Morteza
    JOURNAL OF PLANT NUTRITION, 2018, 41 (07) : 818 - 831