Utilizing Large Language Models in Ophthalmology: The Current Landscape and Challenges

被引:0
|
作者
Chotcomwongse, Peranut [1 ]
Ruamviboonsuk, Paisan [1 ]
Grzybowski, Andrzej [2 ,3 ]
机构
[1] Rungsit Univ, Rajavithi Hosp, Dept Ophthalmol, Vitreoretina Unit, Bangkok, Thailand
[2] Univ Warmia & Mazury, Olsztyn, Poland
[3] Fdn Ophthalmol Dev, Inst Res Ophthalmol, PL-61553 Poznan, Poland
关键词
Large language model; Ophthalmology; ChatGPT; Bard; Copilot; Telemedicine; Artificial intelligence; CHATGPT;
D O I
10.1007/s40123-024-01018-6
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
A large language model (LLM) is an artificial intelligence (AI) model that uses natural language processing (NLP) to understand, interpret, and generate human-like language responses from unstructured text input. Its real-time response capabilities and eloquent dialogue enhance the interactive user experience in human-AI communication like never before. By gathering several sources on the internet, LLM chatbots can interact and respond to a wide range of queries, including problem solving, text summarization, and creating informative notes. Since ophthalmology is one of the medical fields integrating image analysis, telemedicine, AI, and other technologies, LLMs are likely to play an important role in eye care in the near future. This review summarizes the performance and potential applicability of LLMs in ophthalmology according to currently available publications.
引用
收藏
页码:2543 / 2558
页数:16
相关论文
共 50 条
  • [21] Benchmarking Large Language Models: Opportunities and Challenges
    Hodak, Miro
    Ellison, David
    Van Buren, Chris
    Jiang, Xiaotong
    Dholakia, Ajay
    PERFORMANCE EVALUATION AND BENCHMARKING, TPCTC 2023, 2024, 14247 : 77 - 89
  • [22] Ethical and Theological Challenges of Large Language Models
    Strahornik, Vojko
    BOGOSLOVNI VESTNIK-THEOLOGICAL QUARTERLY-EPHEMERIDES THEOLOGICAE, 2023, 83 (04): : 839 - 852
  • [23] MULTILINGUAL JAILBREAK CHALLENGES IN LARGE LANGUAGE MODELS
    Deng, Yue
    Zhang, Wenxuan
    Pan, Sinno Jialin
    Bing, Lidong
    arXiv, 2023,
  • [24] Large language models in psychiatry: Opportunities and challenges
    Volkmer, Sebastian
    Meyer-Lindenberg, Andreas
    Schwarz, Emanuel
    PSYCHIATRY RESEARCH, 2024, 339
  • [25] Large language model integration in Philippine ophthalmology: early challenges and steps forward
    Dychiao, Robyn Gayle K.
    Alberto, Isabelle Rose I.
    Artiaga, Jose Carlo M.
    Salongcay, Recivall P.
    Celi, Leo Anthony
    LANCET DIGITAL HEALTH, 2024, 6 (05): : e308 - e308
  • [26] Vision language models in ophthalmology
    Lim, Gilbert
    Elangovan, Kabilan
    Jin, Liyuan
    CURRENT OPINION IN OPHTHALMOLOGY, 2024, 35 (06) : 487 - 493
  • [27] A Comparative Study of Large Language Models, Human Experts, and Expert-Edited Large Language Models to Neuro-Ophthalmology Questions
    Tailor, Prashant D.
    Dalvin, Lauren A.
    Starr, Matthew R.
    Tajfirouz, Deena A.
    Chodnicki, Kevin D.
    Brodsky, Michael C.
    Mansukhani, Sasha A.
    Moss, Heather E.
    Lai, Kevin E.
    Ko, Melissa W.
    Mackay, Devin D.
    Di Nome, Marie A.
    Dumitrascu, Oana M.
    Pless, Misha L.
    Eggenberger, Eric R.
    Chen, John J.
    JOURNAL OF NEURO-OPHTHALMOLOGY, 2025, 45 (01) : 71 - 77
  • [28] Utilizing Large Language Models to Illustrate Constraints for Construction Planning
    He, Chuanni
    Yu, Bei
    Liu, Min
    Guo, Lu
    Tian, Li
    Huang, Jianfeng
    BUILDINGS, 2024, 14 (08)
  • [29] Utilizing Large Language Models for Enhanced Clinical Trial Matching
    Beattie, J.
    Neufeld, S.
    Yang, D. X.
    Chukwuma, C.
    Gul, A.
    Desai, N. B.
    Dohopolski, M.
    Jiang, S. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2024, 120 (02): : E611 - E611
  • [30] Comment on: Performance of Generative Large Language Models on Ophthalmology Board Style Questions
    Kleebayoon, Amnuay
    Wiwanitkit, Viroj
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2023, 256 : 200 - 200