Time series clustering based on polynomial fitting and multi-order trend features

被引:1
|
作者
Kang, Yun [1 ]
Wu, Chongyan [1 ]
Yu, Bin [1 ]
机构
[1] Hunan Normal Univ, Coll Informat Sci & Engn, Changsha 410081, Hunan, Peoples R China
关键词
Time series; Feature extraction; Polynomial curve fitting; Hierarchical clustering; Time series clustering; ALGORITHM; REPRESENTATION; KERNEL;
D O I
10.1016/j.ins.2024.120939
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Time series clustering serves as a potent data mining method, facilitating the analysis of an extensive array of time series data without the prerequisite of any prior knowledge. It finds wide-ranging use across various sectors, including but not limited to, financial and medical data analysis, and sensor data processing. Given the high dimensionality, non -linearity, and redundancy characteristics associated with time series, conventional clustering algorithms frequently fall short in yielding satisfactory results when directly applied to this kind of data. As such, there is a critical need to judiciously select suitable feature extraction methods and dimension reduction techniques. This paper introduces a time series clustering algorithm, drawing primarily from polynomial fitting derivative features as a wellspring for feature extraction to achieve effective clustering results. Initially, Hodrick Prescott (HP) filtering comes into play for the processing of raw time series data, thereby eliminating noise and redundancy. Subsequently, polynomial curve fitting (PCF) is applied to the data to derive a globally continuous function fitting this time series. Next, by securing multi -order derivative values via this function, the time series is transformed into a multi -order derivative feature sequence. Lastly, we designed a polynomial function derivative features -based dynamic time warping (PFD_DTW) algorithm for determining the distance between two equal or unequal granular length time series, and subsequently a hierarchical clustering method anchored on the PFD_DTW distances for time series clustering after computing interspecies distances. The effectiveness of this method is corroborated by experimental results obtained from several practical datasets.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A novel forecasting method based on multi-order fuzzy time series and technical analysis
    Ye, Furong
    Zhang, Liming
    Zhang, Defu
    Fujita, Hamido
    Gong, Zhiguo
    INFORMATION SCIENCES, 2016, 367 : 41 - 57
  • [2] Study on representation of time series based on subsection polynomial fitting
    Li, Daqi
    Shen, Junyi
    Xie, Jianfeng
    FOURTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 3, PROCEEDINGS, 2007, : 16 - +
  • [3] Temporal Multi-Features Representation Learning-Based Clustering for Time-Series Data
    Lee, Jaehoon
    Kim, Dohee
    Sim, Sunghyun
    IEEE ACCESS, 2024, 12 : 87675 - 87690
  • [4] Battery Grouping with Time Series Clustering based on Features
    Yang, Jiayun
    Ma, Guojin
    Gao, Mingyu
    He, Zhiwei
    2017 IEEE 26TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2017, : 1319 - 1323
  • [5] Social trend tracking by time series based social tagging clustering
    Chen, Shihn-Yuarn
    Tseng, Tzu-Ting
    Ke, Hao-Ren
    Sun, Chuen-Tsai
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (10) : 12807 - 12817
  • [6] Image Quality Assessment Based on Multi-Order Local Features Description, Modeling and Quantification
    Ding, Yong
    Zhao, Xinyu
    Zhang, Zhi
    Dai, Hang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (06): : 1303 - 1315
  • [7] Trend-Based Granular Representation of Time Series and Its Application in Clustering
    Guo, Hongyue
    Wang, Lidong
    Liu, Xiaodong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 9101 - 9110
  • [8] Trend Feature-based Clustering for Research Funding Time Series Data
    Ma Yixuan
    Gao Xuedong
    Pan Baoxiang
    2015 INTERNATIONAL CONFERENCE ON LOGISTICS, INFORMATICS AND SERVICE SCIENCES (LISS), 2015,
  • [9] Fuzzy representational structures for trend based analysis of time series clustering and classification
    Johnpaul, C., I
    Prasad, Munaga V. N. K.
    Nickolas, S.
    Gangadharan, G. R.
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [10] Weighted Fuzzy Clustering for Time Series With Trend-Based Information Granulation
    Guo, Hongyue
    Wan, Mengjun
    Wang, Lidong
    Liu, Xiaodong
    Pedrycz, Witold
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (02) : 903 - 914