Multimodal Hard X-Ray Nanotomography Probes Pore Accessibility of Technical Catalysts after Coking

被引:2
作者
Weber, Sebastian [1 ,2 ]
Karpov, Dmitry [3 ,7 ]
Kahnt, Maik [4 ]
Diaz, Ana [3 ]
Romanenko, Yuliia [5 ]
Kotrel, Stefan [6 ]
Haas, Andreas [6 ]
Hinrichsen, Bernd [6 ]
Bottke, Nils [6 ]
Grunwaldt, Jan-Dierk [1 ,2 ]
Schunk, Stephan [5 ]
Sheppard, Thomas L. [1 ,2 ,8 ]
机构
[1] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, Inst Catalysis Res & Technol, Hermann Von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] PSI, Paul Scherrer Inst, Forschungsstr 111, CH-5232 Villigen, Switzerland
[4] Lund Univ, MAX Lab 4, S-22100 Lund, Sweden
[5] Hte GmbH, Kurpfalzring 104, D-69123 Heidelberg, Germany
[6] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
[7] European Synchrotron Radiat Facil ESRF, ID16 A Beamline, 71 Ave Martyrs, F-38000 Grenoble, France
[8] Univ Leipzig, Inst Chem Technol, Linnestr 3, D-04103 Leipzig, Germany
基金
瑞典研究理事会;
关键词
Carbon; Heterogeneous catalysis; Synchrotron radiation; X-ray fluorescence; X-ray tomography; COMPUTED-TOMOGRAPHY; DEACTIVATION; COKE; DEHYDROGENATION; FRAGMENTATION; PTYCHOGRAPHY; COMPONENTS; ALIGNMENT; BEHAVIOR;
D O I
10.1002/cctc.202301298
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coking is a common catalyst deactivation route in industrial processes involving carbonaceous species. While coking is easy to diagnose, this is often performed by bulk analysis. Understanding specific symptoms such as pore blockage and obstruction of active sites is especially challenging for technical catalysts and requires a spatially-resolved approach. Here a combination of ptychographic X-ray computed tomography (PXCT) and X-ray fluorescence nanotomography (XRF-CT) could identify and allocate regions of coke deposition within a technical zeolite-based propane dehydrogenation catalyst. PXCT is sensitive to the quantitative electron density of the sample, therefore indirectly visualising coke deposition in meso- and macropores with 56-61 nm 3D spatial resolution. For more direct visualisation the catalysts were treated with Cu solution as fluorescent marker, whereby complementary XRF-CT analysis could distinguish accessible and blocked pores based on the presence or absence of adsorbed Cu. This strategy was used to assess coking as a function of time on stream, to evaluate coke removal by oxidative regeneration, and to distinguish the presence of coke deposits separately within the zeolite and binder components. This strategy is applicable to virtually any porous solid catalyst and can deliver previously unknown insights into the common phenomenon of coke deposition particularly in technical catalysts. X-ray nanotomography visualises and distinguishes coke deposition sites within individual components of a technical catalyst composite. An accurate nanoscale view of catalyst deactivation and regeneration is achieved. image
引用
收藏
页数:8
相关论文
共 58 条
[1]   Heterogeneous Catalyst Deactivation and Regeneration: A Review [J].
Argyle, Morris D. ;
Bartholomew, Calvin H. .
CATALYSTS, 2015, 5 (01) :145-269
[2]   Atom Probe Tomography for Catalysis Applications: A Review [J].
Barroo, Cedric ;
Akey, Austin J. ;
Bell, David C. .
APPLIED SCIENCES-BASEL, 2019, 9 (13)
[3]   Chemical imaging of catalytic solids with synchrotron radiation [J].
Beale, Andrew M. ;
Jacques, Simon D. M. ;
Weckhuysen, Bert M. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (12) :4656-4672
[4]   Ptychographic characterization of a coherent nanofocused X-ray beam [J].
Bjorling, Alexander ;
Kalbfleisch, Sebastian ;
Kahnt, Maik ;
Sala, Simone ;
Parfeniukas, Karolis ;
Vogt, Ulrich ;
Carbone, Gerardina ;
Johansson, Ulf .
OPTICS EXPRESS, 2020, 28 (04) :5069-5076
[5]   Heterogeneity in the Fragmentation of Ziegler Catalyst Particles during Ethylene Polymerization Quantified by X-ray Nanotomography [J].
Bossers, Koen W. ;
Valadian, Roozbeh ;
Garrevoet, Jan ;
van Malderen, Stijn ;
Chan, Robert ;
Friederichs, Nic ;
Severn, John ;
Wilbers, Arnold ;
Zanoni, Silvia ;
Jongkind, Maarten K. ;
Weckhuysen, Bert M. ;
Meirer, Florian .
JACS AU, 2021, 1 (06) :852-864
[6]   Correlated X-ray Ptychography and Fluorescence Nano-Tomography on the Fragmentation Behavior of an Individual Catalyst Particle during the Early Stages of Olefin Polymerization [J].
Bossers, Koen W. ;
Valadian, Roozbeh ;
Zanoni, Silvia ;
Smeets, Remy ;
Friederichs, Nic ;
Garrevoet, Jan ;
Meirer, Florian ;
Weckhuysen, Bert M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) :3691-3695
[7]   Design and performance of a dedicated coherent X-ray scanning diffraction instrument at beamline Nano MAX of MAX IV [J].
Carbone, Dina ;
Kalbfleisch, Sebastian ;
Johansson, Ulf ;
Bjorling, Alexander ;
Kahnt, Maik ;
Sala, Simone ;
Stankevic, Tomas ;
Rodriguez-Fernandez, Angel ;
Bring, Bjorn ;
Matej, Zdenek ;
Bell, Paul ;
Erb, David ;
Hardion, Vincent ;
Weninger, Clemens ;
Al-Sallami, Hussein ;
Lidon-Simon, Julio ;
Carlson, Stefan ;
Jerrebo, Annika ;
Jensen, Brian Norsk ;
Bjermo, Anders ;
Ahnberg, Karl ;
Roslund, Linus .
JOURNAL OF SYNCHROTRON RADIATION, 2022, 29 :876-887
[8]   Regularized image reconstruction algorithms for positron emission tomography [J].
Chang, JH ;
Anderson, JMM ;
Votaw, JR .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (09) :1165-1175
[9]   Assessment of the 3D Pore Structure and Individual Components of Preshaped Catalyst Bodies by X-Ray Imaging [J].
da Silva, Julio C. ;
Mader, Kevin ;
Holler, Mirko ;
Haberthuer, David ;
Diaz, Ana ;
Guizar-Sicairos, Manuel ;
Cheng, Wu-Cheng ;
Shu, Yuying ;
Raabe, Joerg ;
Menzel, Andreas ;
van Bokhoven, Jeroen A. .
CHEMCATCHEM, 2015, 7 (03) :413-416
[10]   New Dimensions in Catalysis Research with Hard X-Ray Tomography [J].
Das, Srashtasrita ;
Pashminehazar, Reihaneh ;
Sharma, Shweta ;
Weber, Sebastian ;
Sheppard, Thomas L. .
CHEMIE INGENIEUR TECHNIK, 2022, 94 (11) :1591-1610