Bayesian spatio-temporal analysis of dengue transmission in Lao PDR

被引:1
|
作者
Soukavong, Mick [1 ]
Thinkhamrop, Kavin [1 ]
Pratumchart, Khanittha [2 ]
Soulaphy, Chanthavy [3 ]
Xangsayarath, Phonepadith [3 ]
Mayxay, Mayfong [4 ,5 ,6 ,7 ]
Phommachanh, Sysavanh [5 ]
Kelly, Matthew [8 ]
Wangdi, Kinley [8 ,9 ]
Clements, Archie C. A. [10 ]
Suwannatrai, Apiporn T. [2 ]
机构
[1] Khon Kaen Univ, Fac Publ Hlth, Publ Hlth Program, Khon Kaen, Thailand
[2] Khon Kaen Univ, Fac Med, Dept Parasitol, Khon Kaen, Thailand
[3] Minist Hlth, Natl Ctr Lab & Epidemiol NCLE, Viangchan, Laos
[4] Mahosot Hosp, Lao Oxford Mahosot Hosp Wellcome Trust Res Unit, Microbiol Lab, Viangchan, Laos
[5] Univ Hlth Sci, Inst Res & Educ Dev, Viangchan, Laos
[6] Univ Oxford, Ctr Trop Med & Global Hlth, Nuffield Dept Med, Oxford, England
[7] Natl Univ Singapore, Saw Hwee Hock Sch Publ Hlth, Singapore, Singapore
[8] Australian Natl Univ, Coll Hlth & Med, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT, Australia
[9] Univ Canberra, Hlth Res Inst, Fac Hlth, HEAL Global Res Ctr, Canberra, Australia
[10] Queens Univ Belfast, Belfast, North Ireland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Dengue; Zoonotic disease; Temporal; Spatial; Bayesian; Lao PDR; AEDES-AEGYPTI DIPTERA; PUERTO-RICO; PATTERNS; CLIMATE; VIRUS; FEVER; URBAN; ABUNDANCE; DRIVERS;
D O I
10.1038/s41598-024-71807-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue, a zoonotic viral disease transmitted by Aedes mosquitoes, poses a significant public health concern throughout the Lao People's Democratic Republic (Lao PDR). This study aimed to describe spatial-temporal patterns and quantify the effects of environmental and climate variables on dengue transmission at the district level. The dengue data from 2015 to 2020 across 148 districts of Lao PDR were obtained from the Lao PDR National Center for Laboratory and Epidemiology (NCLE). The association between monthly dengue occurrences and environmental and climate variations was investigated using a multivariable Zero-inflated Poisson regression model developed in a Bayesian framework. The study analyzed a total of 72,471 dengue cases with an incidence rate of 174 per 100,000 population. Each year, incidence peaked from June to September and a large spike was observed in 2019. The Bayesian spatio-temporal model revealed a 9.1% decrease (95% credible interval [CrI] 8.9%, 9.2%) in dengue incidence for a 0.1 unit increase in monthly normalized difference vegetation index at a 1-month lag and a 5.7% decrease (95% CrI 5.3%, 6.2%) for a 1 cm increase in monthly precipitation at a 6-month lag. Conversely, dengue incidence increased by 43% (95% CrI 41%, 45%) for a 1 degrees C increase in monthly mean temperature at a 3-month lag. After accounting for covariates, the most significant high-risk spatial clusters were detected in the southern regions of Lao PDR. Probability analysis highlighted elevated trends in 45 districts, emphasizing the importance of targeted control strategies in high-risk areas. This research underscores the impact of climate and environmental factors on dengue transmission, emphasizing the need for proactive public health interventions tailored to specific contexts in Lao PDR.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Spatio-Temporal Analysis of Dengue Fever Cases: A Retrospective Study
    Nayak, M. Siva Durga Prasad
    Narayan, K. A.
    JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH, 2020, 14 (04) : LC5 - LC8
  • [22] Spatio-temporal analysis of the main dengue vector populations in Singapore
    Sun, Haoyang
    Dickens, Borame L.
    Richards, Daniel
    Ong, Janet
    Rajarethinam, Jayanthi
    Hassim, Muhammad E. E.
    Lim, Jue Tao
    Carrasco, L. Roman
    Aik, Joel
    Yap, Grace
    Cook, Alex R.
    Ng, Lee Ching
    PARASITES & VECTORS, 2021, 14 (01)
  • [23] Spatio-temporal clustering analysis of dengue disease in Peninsular Malaysia
    Nurul Syafiah Abd Naeeim
    Nuzlinda Abdul Rahman
    Journal of Public Health, 2023, 31 : 307 - 317
  • [24] Spatio-temporal clustering analysis of dengue disease in Peninsular Malaysia
    Abd Naeeim, Nurul Syafiah
    Abdul Rahman, Nuzlinda
    JOURNAL OF PUBLIC HEALTH-HEIDELBERG, 2023, 31 (02): : 307 - 317
  • [25] EFFECT OF HUMAN MOBILITY ON PREDICTIVE SPATIO-TEMPORAL MODEL OF DENGUE EPIDEMIC TRANSMISSION
    Bouzid, Leila
    Belhamiti, Omar
    Belgacem, Fethi Bin Muhammad
    JOURNAL OF BIOLOGICAL SYSTEMS, 2022, 30 (04) : 721 - 739
  • [26] Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica
    Chou-Chen, Shu Wei
    Barboza, Luis A.
    Vasquez, Paola
    Garcia, Yury E.
    Calvo, Juan G.
    Hidalgo, Hugo G.
    Sanchez, Fabio
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2023, 30 (04) : 687 - 713
  • [27] Bayesian spatio-temporal model with INLA for dengue fever risk prediction in Costa Rica
    Shu Wei Chou-Chen
    Luis A. Barboza
    Paola Vásquez
    Yury E. García
    Juan G. Calvo
    Hugo G. Hidalgo
    Fabio Sanchez
    Environmental and Ecological Statistics, 2023, 30 : 687 - 713
  • [28] Spatio-temporal Bayesian hierarchical modeling of Dengue incidence in the metropolitan area of Maracay, Venezuela
    Monsalve, Nora C.
    Rubio-Rubio, Yasmin
    Perez, Mara E.
    BOLETIN DE MALARIOLOGIA Y SALUD AMBIENTAL, 2010, 50 (02): : 219 - 232
  • [29] CHARACTERIZING THE SPATIO-TEMPORAL DYNAMICS OF DENGUE IN BRAZIL
    Takahashi, Saki
    Rodriguez-Barraquer, Isabel
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2019, 101 : 57 - 57
  • [30] A bayesian spatio-temporal dynamic analysis of food security in Africa
    Bofa, Adusei
    Zewotir, Temesgen
    SCIENTIFIC REPORTS, 2024, 14 (01):