Bayesian spatio-temporal analysis of dengue transmission in Lao PDR

被引:1
|
作者
Soukavong, Mick [1 ]
Thinkhamrop, Kavin [1 ]
Pratumchart, Khanittha [2 ]
Soulaphy, Chanthavy [3 ]
Xangsayarath, Phonepadith [3 ]
Mayxay, Mayfong [4 ,5 ,6 ,7 ]
Phommachanh, Sysavanh [5 ]
Kelly, Matthew [8 ]
Wangdi, Kinley [8 ,9 ]
Clements, Archie C. A. [10 ]
Suwannatrai, Apiporn T. [2 ]
机构
[1] Khon Kaen Univ, Fac Publ Hlth, Publ Hlth Program, Khon Kaen, Thailand
[2] Khon Kaen Univ, Fac Med, Dept Parasitol, Khon Kaen, Thailand
[3] Minist Hlth, Natl Ctr Lab & Epidemiol NCLE, Viangchan, Laos
[4] Mahosot Hosp, Lao Oxford Mahosot Hosp Wellcome Trust Res Unit, Microbiol Lab, Viangchan, Laos
[5] Univ Hlth Sci, Inst Res & Educ Dev, Viangchan, Laos
[6] Univ Oxford, Ctr Trop Med & Global Hlth, Nuffield Dept Med, Oxford, England
[7] Natl Univ Singapore, Saw Hwee Hock Sch Publ Hlth, Singapore, Singapore
[8] Australian Natl Univ, Coll Hlth & Med, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT, Australia
[9] Univ Canberra, Hlth Res Inst, Fac Hlth, HEAL Global Res Ctr, Canberra, Australia
[10] Queens Univ Belfast, Belfast, North Ireland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Dengue; Zoonotic disease; Temporal; Spatial; Bayesian; Lao PDR; AEDES-AEGYPTI DIPTERA; PUERTO-RICO; PATTERNS; CLIMATE; VIRUS; FEVER; URBAN; ABUNDANCE; DRIVERS;
D O I
10.1038/s41598-024-71807-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue, a zoonotic viral disease transmitted by Aedes mosquitoes, poses a significant public health concern throughout the Lao People's Democratic Republic (Lao PDR). This study aimed to describe spatial-temporal patterns and quantify the effects of environmental and climate variables on dengue transmission at the district level. The dengue data from 2015 to 2020 across 148 districts of Lao PDR were obtained from the Lao PDR National Center for Laboratory and Epidemiology (NCLE). The association between monthly dengue occurrences and environmental and climate variations was investigated using a multivariable Zero-inflated Poisson regression model developed in a Bayesian framework. The study analyzed a total of 72,471 dengue cases with an incidence rate of 174 per 100,000 population. Each year, incidence peaked from June to September and a large spike was observed in 2019. The Bayesian spatio-temporal model revealed a 9.1% decrease (95% credible interval [CrI] 8.9%, 9.2%) in dengue incidence for a 0.1 unit increase in monthly normalized difference vegetation index at a 1-month lag and a 5.7% decrease (95% CrI 5.3%, 6.2%) for a 1 cm increase in monthly precipitation at a 6-month lag. Conversely, dengue incidence increased by 43% (95% CrI 41%, 45%) for a 1 degrees C increase in monthly mean temperature at a 3-month lag. After accounting for covariates, the most significant high-risk spatial clusters were detected in the southern regions of Lao PDR. Probability analysis highlighted elevated trends in 45 districts, emphasizing the importance of targeted control strategies in high-risk areas. This research underscores the impact of climate and environmental factors on dengue transmission, emphasizing the need for proactive public health interventions tailored to specific contexts in Lao PDR.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Spatio-temporal associations between deforestation and malaria incidence in Lao PDR
    Rerolle, Francois
    Dantzer, Emily
    Lover, Andrew A.
    Marshall, John M.
    Hongvanthong, Bouasy
    Sturrock, Hugh J. W.
    Bennett, Adam
    ELIFE, 2021, 10
  • [2] Surveillance of dengue vectors using spatio-temporal Bayesian modeling
    Costa, Ana Carolina C.
    Codeco, Claudia T.
    Honorio, Nildimar A.
    Pereira, Glaucio R.
    Pinheiro, Carmen Fatima N.
    Nobre, Aline A.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2015, 15
  • [3] Surveillance of dengue vectors using spatio-temporal Bayesian modeling
    Ana Carolina C. Costa
    Cláudia T. Codeço
    Nildimar A. Honório
    Gláucio R. Pereira
    Carmen Fátima N. Pinheiro
    Aline A. Nobre
    BMC Medical Informatics and Decision Making, 15
  • [4] Bayesian temporal, spatial and spatio-temporal models of dengue in a small area with INLA
    Sani, Asrul
    Abapihi, Bahriddin
    Mukhsar
    Tosepu, Ramadhan
    Usman, Ida
    Rahman, Gusti Arviani
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06): : 939 - 951
  • [5] Spatio-temporal dengue risk modelling in the south of Thailand: a Bayesian approach to dengue vulnerability
    Abdulsalam, Fatima Ibrahim
    Antunez, Pablo
    Jawjit, Warit
    PEERJ, 2023, 11
  • [6] Spatio-temporal unevenness in local land system regime shifts caused by land deals in Lao PDR
    Magliocca, Nicholas R.
    Ellicott, Evan A.
    Ingalls, Micah L.
    Epprecht, Michael
    Hett, Cornelia
    Nanhthavong, Vong
    de Bremond, Ariane C.
    ECOLOGY AND SOCIETY, 2022, 27 (04):
  • [7] Spatio-temporal variability in the transmission of dengue in Buenos Aires City.
    Carbajo, AE
    Gomez, SM
    Curto, SI
    Schweigmann, NJ
    MEDICINA-BUENOS AIRES, 2004, 64 (03) : 231 - 234
  • [8] Effects of Climatic Factors on Dengue Incidence: A Comparison of Bayesian Spatio-Temporal Models
    Aswi, Aswi
    Sukarna
    Cramb, Susanna
    Mengersen, Kerrie
    Journal of Physics: Conference Series, 2021, 1863 (01):
  • [9] ON THE BAYESIAN ZERO-INFLATED SPATIO-TEMPORAL MODELLING OF DENGUE HEMORRHAGIC FEVER
    Sanson, Daniel R.
    Lim-Polestico, Daisy Lou
    ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 90 (01) : 35 - 58
  • [10] Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review
    Aswi, A.
    Cramb, S. M.
    Moraga, P.
    Mengersen, K.
    EPIDEMIOLOGY AND INFECTION, 2019, 147