Demographic but not competitive time lags can transiently amplify climate-induced changes in vegetation carbon storage

被引:1
作者
Levine, Jonathan M. [1 ]
Hillerislambers, Janneke [2 ]
Petry, William K. [3 ]
Usinowicz, Jacob [4 ]
Crowther, Thomas W. [2 ]
机构
[1] Princeton Univ, Dept Ecol & Evolutionary Biol, Princeton, NJ 08540 USA
[2] Swiss Fed Inst Technol, Dept Environm Syst Sci, Zurich, Switzerland
[3] North Carolina State Univ, Dept Plant Biol, Raleigh, NC USA
[4] Univ British Columbia, Dept Zool, Vancouver, BC, Canada
关键词
carbon storage; climate change; competition; demography; time lags; vegetation; WIDESPREAD INCREASE; GROWTH; MORTALITY; SENSITIVITY; DYNAMICS; MODELS; TREES; RATES; SINK;
D O I
10.1111/gcb.17432
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
How terrestrial ecosystems will accumulate carbon as the climate continues to change is a major source of uncertainty in projections of future climate. Under growth-stimulating environmental change, time lags inherent in population and community dynamic processes have been posed to dampen, or alternatively amplify, short-term carbon gain in terrestrial vegetation, but these outcomes can be difficult to predict. To theoretically frame this problem, we developed a simple model of vegetation dynamics that identifies the stage-structured demographic and competitive processes that could govern the timescales of carbon storage and loss. We show that demographic lags associated with growth-stimulating environmental change can allow a rapid increase in population-level carbon storage that is lost back to the atmosphere in later years. However, this transient carbon storage only emerges when environmental change increases the transition of adult individuals into a larger size class that suffers markedly higher mortality. Otherwise, demographic lags simply slow carbon accumulation. Counterintuitively, an analogous tradeoff between maximum adult size and survivorship in two-species models, coupled with environmental change-driven replacement, does not generate the transient carbon gain seen in the single-species models. Instead lags in competitive replacement slow the approach to the eventual carbon trajectory. Together, our results suggest that time lags inherent in demographic and compositional turnover tend to slow carbon accumulation in systems responding to growth-stimulating environmental change. Only under specific conditions will lagged demographic processes in such systems drive transient carbon accumulation, conditions that investigators can examine in nature to help project future carbon trajectories. A model of woody vegetation shows that for populations exhibiting a growth-survival tradeoff, demographic lags can cause a transient gain in carbon following growth-stimulating environmental change, but that accumulated carbon is subsequently lost back to the atmosphere. By contrast, growth-survival tradeoffs across rather than within species and an accompanying lag in competitive replacement, do not generate this same pattern of transient carbon accumulation. In most cases, demographic and competitive lags simply slow the accumulation of carbon.image
引用
收藏
页数:13
相关论文
共 40 条
[1]   Increased early growth rates decrease longevities of conifers in subalpine forests [J].
Bigler, Christof ;
Veblen, Thomas T. .
OIKOS, 2009, 118 (08) :1130-1138
[2]   Ecological lags govern the pace and outcome of plant community responses to 21st-century climate change [J].
Block, Sebastian ;
Maechler, Marc-Jacques ;
Levine, Jacob, I ;
Alexander, Jake M. ;
Pellissier, Loic ;
Levine, Jonathan M. .
ECOLOGY LETTERS, 2022, 25 (10) :2156-2166
[3]   Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest [J].
Bond-Lamberty, Ben ;
Rocha, Adrian V. ;
Calvin, Katherine ;
Holmes, Bruce ;
Wang, Chuankuan ;
Goulden, Michael L. .
GLOBAL CHANGE BIOLOGY, 2014, 20 (01) :216-227
[4]   High sensitivity of future global warming to land carbon cycle processes [J].
Booth, Ben B. B. ;
Jones, Chris D. ;
Collins, Mat ;
Totterdell, Ian J. ;
Cox, Peter M. ;
Sitch, Stephen ;
Huntingford, Chris ;
Betts, Richard A. ;
Harris, Glen R. ;
Lloyd, Jon .
ENVIRONMENTAL RESEARCH LETTERS, 2012, 7 (02)
[5]   Forest carbon sink neutralized by pervasive growth-lifespan trade-offs [J].
Brienen, R. J. W. ;
Caldwell, L. ;
Duchesne, L. ;
Voelker, S. ;
Barichivich, J. ;
Baliva, M. ;
Ceccantini, G. ;
Di Filippo, A. ;
Helama, S. ;
Locosselli, G. M. ;
Lopez, L. ;
Piovesan, G. ;
Schongart, J. ;
Villalba, R. ;
Gloor, E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Long-term decline of the Amazon carbon sink [J].
Brienen, R. J. W. ;
Phillips, O. L. ;
Feldpausch, T. R. ;
Gloor, E. ;
Baker, T. R. ;
Lloyd, J. ;
Lopez-Gonzalez, G. ;
Monteagudo-Mendoza, A. ;
Malhi, Y. ;
Lewis, S. L. ;
Vasquez Martinez, R. ;
Alexiades, M. ;
Alvarez Davila, E. ;
Alvarez-Loayza, P. ;
Andrade, A. ;
Aragao, L. E. O. C. ;
Araujo-Murakami, A. ;
Arets, E. J. M. M. ;
Arroyo, L. ;
Aymard C, G. A. ;
Banki, O. S. ;
Baraloto, C. ;
Barroso, J. ;
Bonal, D. ;
Boot, R. G. A. ;
Camargo, J. L. C. ;
Castilho, C. V. ;
Chama, V. ;
Chao, K. J. ;
Chave, J. ;
Comiskey, J. A. ;
Cornejo Valverde, F. ;
da Costa, L. ;
de Oliveira, E. A. ;
Di Fiore, A. ;
Erwin, T. L. ;
Fauset, S. ;
Forsthofer, M. ;
Galbraith, D. R. ;
Grahame, E. S. ;
Groot, N. ;
Herault, B. ;
Higuchi, N. ;
Coronado, E. N. Honorio ;
Keeling, H. ;
Killeen, T. J. ;
Laurance, W. F. ;
Laurance, S. ;
Licona, J. ;
Magnussen, W. E. .
NATURE, 2015, 519 (7543) :344-+
[7]   GROWTH AND CANOPY ARCHITECTURE OF SHADE-TOLERANT TREES - RESPONSE TO CANOPY GAPS [J].
CANHAM, CD .
ECOLOGY, 1988, 69 (03) :786-795
[8]   Sensitivity analysis of transient population dynamics [J].
Caswell, Hal .
ECOLOGY LETTERS, 2007, 10 (01) :1-15
[9]   Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon [J].
Chambers, JQ ;
Higuchi, N ;
Schimel, JP ;
Ferreira, LV ;
Melack, JM .
OECOLOGIA, 2000, 122 (03) :380-388
[10]  
COMPADRE Plant Matrix Database, 2023, Version 6.23.5.0