Erlangization/Canadization of Phase-Type Jump Diffusions, with Applications to Barrier Options

被引:1
作者
Asmussen, Soren [1 ]
机构
[1] Aarhus Univ, Dept Math, Ny Munkegade, DK-8000 Aarhus C, Denmark
关键词
Block Toeplitz matrix; Fixed point equation; Greeks; Iteration; L & eacute; vy process; Phase-type distribution; Richardson extrapolation; Romberg integration; Upper triangular block matrix; Wiener-Hopf factorization; LEVY PROCESSES; FLUCTUATION THEORY; TRANSFORM; DRIVEN; SENSITIVITIES; RANDOMIZATION; PRICES;
D O I
10.1007/s41096-024-00209-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a jump diffusion with upward phase-type jumps with p phases, the maximum before an independent Erlang time e eta q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>q_\eta$$\end{document} with q stages and rate parameter eta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta$$\end{document} is again phase-type with q(p+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q(p+1)$$\end{document} phases. An iterative scheme for computing the phase generator is presented and applied to representing the price of a barrier option with time horizon e eta q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>q_\eta$$\end{document} as a single ordinary integral. Canadization then means to approximate a fixed horizon T with an e eta q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e<^>q_\eta$$\end{document} satisying Ee eta q=T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {E}}e<^>q_\eta =T$$\end{document} for a sufficiently large q. Similar results holds for Greeks like the delta and the gamma. A numerical example is given for a down-and-in call option and the Canadization is combined with Richardson extrapolation. Finally, a recursion is developed that only requires the iteration to be performed in p+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p+1$$\end{document} dimensions.
引用
收藏
页码:575 / 596
页数:22
相关论文
共 49 条
[1]   Multi-precision laplace transform inversion [J].
Abate, J ;
Valkó, PP .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (05) :979-993
[2]  
Abate J., 1995, ORSA Journal on Computing, V7, P36, DOI 10.1287/ijoc.7.1.36
[3]  
Abate J.., 2000, Computational Probability, P257, DOI [DOI 10.1007/978-1-4757-4828-48, 10.1007/978-1-4757-4828-4, 10.1007/978-1-4757-4828-4_8]
[4]   A unified framework for numerically inverting Laplace transforms [J].
Abate, Joseph ;
Whitt, Ward .
INFORMS JOURNAL ON COMPUTING, 2006, 18 (04) :408-421
[5]   American options under stochastic volatility: control variates, maturity randomization & multiscale asymptotics [J].
Agarwal, Ankush ;
Juneja, Sandeep ;
Sircar, Ronnie .
QUANTITATIVE FINANCE, 2016, 16 (01) :17-30
[6]   Numerical Techniques in L,vy Fluctuation Theory [J].
Asghari, Naser M. ;
den Iseger, Peter ;
Mandjes, Michael .
METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (01) :31-52
[7]  
Asmussen S, 2024, J APPL PROBAB
[8]  
Asmussen S., 1995, Comm. Stat. Stoch. Models, V11, P21, DOI [10.1080/15326349508807330, DOI 10.1080/15326349508807330]
[9]  
Asmussen S., 2008, J COMPUT FINANC, V8, P79
[10]  
ASMUSSEN S., 2003, Applied probability and queues, V2nd