THE MULTIDIMENSIONAL REVERSE HARDY INEQUALITIES

被引:0
作者
Gogatishvili, A. [1 ]
Mustafayev, R. Ch. [1 ,2 ]
机构
[1] Acad Sci Czech Republic, Inst Math, CR-11567 Prague 1, Czech Republic
[2] Azerbaijan Acad Sci, Inst Math & Mech, AZ-1141 Baku, Azerbaijan
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2012年 / 15卷 / 01期
关键词
Multidimensional Hardy operator; Hardy inequality; reverse Hardy inequality; discretization;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we characterize the validity of the multidimensional reverse Hardy inequalities parallel to gw parallel to(Lp(Rn)) <= C parallel to v(t) integral(cB(0,t)) g(y)dy parallel to(Lq(0,+infinity)) parallel to gw parallel to(Lp(Rn)) <= C parallel to v(t) integral(B(0,t)) g(y)dy parallel to(Lq(0,+infinity)) for non-negative measurable functions on R-n, where B(0,t) is the closed ball in R-n centered at zero with radius t, B-C(0,t) = R-n \ B(0,t), 0 < p <= 1, 0 < q <= +infinity, w and v are weight functions on R-n and (0,+infinity), respectively. Obtained conditions are the natural extensions of one-dimensional conditions.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 9 条
[1]  
DRABEK P., 1995, INT SER NUMER MATH, V123, P3
[2]   The reverse Hardy inequality with measures [J].
Evans, W. Desmond ;
Gogatishvili, Amiran ;
Opic, Bohumir .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2008, 11 (01) :43-74
[3]   Discretization and anti-discretization of rearrangement-invariant norms [J].
Gogatishvili, A ;
Pick, L .
PUBLICACIONS MATEMATIQUES, 2003, 47 (02) :311-358
[4]  
Grosse-Erdmann K.G., 1998, Lecture Notes in Mathematics, V1679
[5]  
Kufner A., 2007, The Hardy inequality. About its history and some related results
[6]  
Leindler L, 1976, ACTA SCI MATH SZEGED, V2, P117
[7]  
Leindler L., 1993, ACTA SCI MATH SZEGED, V58, P191
[8]  
Opic B., 1990, PITMAN RES NOTES MAT, V219
[9]  
Persson L.E., 2003, WEIGHTED INEQUALITIE