Exploration of microscopic physical processes of Z-pinch by a modified electrostatic direct implicit particle-in-cell algorithm

被引:0
作者
Li, Kaixuan [1 ]
Ning, Cheng [1 ]
Dong, Ye [1 ]
Xue, Chuang [1 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
Z-pinch; particle-in-cell; ion heating; charged particle collisions; 52.58.Lq; 52.65.Rr; 52.50.Sw; 52.20.Hv; X-RAY; TIME INTEGRATION; PLASMA; COLLISIONS;
D O I
10.1088/1674-1056/ad553a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For investigating efficiently the stagnation kinetic-process of Z-pinch, we develop a novel modified electrostatic implicit particle-in-cell algorithm in radial one-dimension for Z-pinch simulation in which a small-angle cumulative binary collision algorithm is used. In our algorithm, the electric field in z-direction is solved by a parallel electrode-plate model, the azimuthal magnetic field is obtained by Ampere's law, and the term for charged particle gyromotion is approximated by the cross product of the averaged velocity and magnetic field. In simulation results of 2 MA deuterium plasma shell Z-pinch, the mass-center implosion trajectory agrees generally with that obtained by one-dimensional MHD simulation, and the plasma current also closely aligns with the external current. The phase space diagrams and radial-velocity probability distributions of ions and electrons are obtained. The main kinetic characteristic of electron motion is thermal equilibrium and oscillation, which should be oscillated around the ions, while that of ion motion is implosion inwards. In the region of stagnation radius, the radial-velocity probability distribution of ions transits from the non-equilibrium to equilibrium state with the current increasing, while of electrons is basically the equilibrium state. When the initial ion density and current peak are not high enough, the ions may not reach their thermal equilibrium state through collisions even in its stagnation phase.
引用
收藏
页数:10
相关论文
共 39 条
[1]   1D kinetic study of pinch formation in a dense plasma focus: Transition from collisional to collisionless regimes [J].
Angus, J. R. ;
Link, A. J. ;
Schmidt, A. E. .
PHYSICS OF PLASMAS, 2021, 28 (01)
[2]  
Angus JR, 2022, J COMPUT PHYS, V456, DOI [10.1109/ICOPS45751.2022.9813107, 10.1016/j.jcp.2022.111030]
[3]   Energy balance in a Z pinch with suppressed Rayleigh-Taylor instability [J].
Baksht, R. B. ;
Oreshkin, V. I. ;
Rousskikh, A. G. ;
Zhigalin, A. S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (03)
[4]   IMPLICIT TIME INTEGRATION FOR PLASMA SIMULATION [J].
COHEN, BI ;
LANGDON, AB ;
FRIEDMAN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (01) :15-38
[5]   Neutron production and implosion characteristics of a deuterium gas-puff Z pinch [J].
Coverdale, C. A. ;
Deeney, C. ;
Velikovich, A. L. ;
Clark, R. W. ;
Chong, Y. K. ;
Davis, J. ;
Chittenden, J. ;
Ruiz, C. L. ;
Cooper, G. W. ;
Nelson, A. J. ;
Franklin, J. ;
LePell, P. D. ;
Apruzese, J. P. ;
Levine, J. ;
Banister, J. ;
Qi, N. .
PHYSICS OF PLASMAS, 2007, 14 (02)
[6]   Enhancement of X-ray power from a Z pinch using nested-wire arrays [J].
Deeney, C ;
Douglas, MR ;
Spielman, RB ;
Nash, TJ ;
Peterson, DL ;
L'Eplattenier, P ;
Chandler, GA ;
Seamen, JF ;
Struve, KW .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :4883-4886
[7]   Effective versus ion thermal temperatures in the Weizmann Ne Z-pinch: Modeling and stagnation physics [J].
Giuliani, J. L. ;
Thornhill, J. W. ;
Kroupp, E. ;
Osin, D. ;
Maron, Y. ;
Dasgupta, A. ;
Apruzese, J. P. ;
Velikovich, A. L. ;
Chong, Y. K. ;
Starobinets, A. ;
Fisher, V. ;
Zarnitsky, Yu. ;
Bernshtam, V. ;
Fisher, A. ;
Mehlhorn, T. A. ;
Deeney, C. .
PHYSICS OF PLASMAS, 2014, 21 (03)
[8]   A Review of the Gas-Puff Z-Pinch as an X-Ray and Neutron Source [J].
Giuliani, John L. ;
Commisso, Robert J. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2015, 43 (08) :2385-2453
[9]   Ion viscous heating in a magnetohydrodynamically unstable Z pinch at over 2x109 Kelvin - art. no. 075003 [J].
Haines, MG ;
LePell, PD ;
Coverdale, CA ;
Jones, B ;
Deeney, C ;
Apruzese, JP .
PHYSICAL REVIEW LETTERS, 2006, 96 (07)
[10]  
Klir D., 2011, Plasma Phys. Control. Fusion, V54, DOI [10.1088/0741-3335/54/1/015001, DOI 10.1088/0741-3335/54/1/015001]