Exploring Federated Learning Tendencies Using a Semantic Keyword Clustering Approach

被引:4
作者
Enguix, Francisco [1 ]
Carrascosa, Carlos [1 ]
Rincon, Jaime [2 ]
机构
[1] Univ Politecn Valencia UPV, Valencian Res Inst Artificial Intelligence VRAIN, Valencia 46022, Spain
[2] Univ Burgos, Escuela Politecn Super, Dept Digitalizac, Miranda De Ebro 09006, Spain
关键词
federated learning; analysis; review; multi-agent system (MAS); FRAMEWORK; ROBUST;
D O I
10.3390/info15070379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel approach to analyzing trends in federated learning (FL) using automatic semantic keyword clustering. The authors collected a dataset of FL research papers from the Scopus database and extracted keywords to form a collection representing the FL research landscape. They employed natural language processing (NLP) techniques, specifically a pre-trained transformer model, to convert keywords into vector embeddings. Agglomerative clustering was then used to identify major thematic trends and sub-areas within FL. The study provides a granular view of the thematic landscape and captures the broader dynamics of research activity in FL. The key focus areas are divided into theoretical areas and practical applications of FL. The authors make their FL paper dataset and keyword clustering results publicly available. This data-driven approach moves beyond manual literature reviews and offers a comprehensive overview of the current evolution of FL.
引用
收藏
页数:27
相关论文
共 64 条
[51]  
Wu Bing, 2024, Smart Grid and Internet of Things: 7th EAI International Conference, SGIoT 2023, Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (557), P12, DOI 10.1007/978-3-031-55976-1_2
[52]   A hierarchical federated learning framework for collaborative quality defect inspection in construction [J].
Wu, Hai-Tao ;
Li, Heng ;
Chi, Hung-Lin ;
Kou, Wei-Bin ;
Wu, Yik-Chung ;
Wang, Shuai .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133
[53]   HiFlash: Communication-Efficient Hierarchical Federated Learning With Adaptive Staleness Control and Heterogeneity-Aware Client-Edge Association [J].
Wu, Qiong ;
Chen, Xu ;
Ouyang, Tao ;
Zhou, Zhi ;
Zhang, Xiaoxi ;
Yang, Shusen ;
Zhang, Junshan .
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2023, 34 (05) :1560-1579
[54]   Label-Efficient Self-Supervised Federated Learning for Tackling Data Heterogeneity in Medical Imaging [J].
Yan, Rui ;
Qu, Liangqiong ;
Wei, Qingyue ;
Huang, Shih-Cheng ;
Shen, Liyue ;
Rubin, Daniel L. ;
Xing, Lei ;
Zhou, Yuyin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (07) :1932-1943
[55]  
Yang H, 2024, IEEE INTERNET THINGS, V11, P16289, DOI 10.1109/JIOT.2024.3351371
[56]   Hypernetworks-Based Hierarchical Federated Learning on Hybrid Non-IID Datasets for Digital Twin in Industrial IoT [J].
Yang, Jihao ;
Jiang, Wen ;
Nie, Laisen .
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02) :1413-1423
[57]   Model poisoning attack in differential privacy-based federated learning [J].
Yang, Ming ;
Cheng, Hang ;
Chen, Fei ;
Liu, Ximeng ;
Wang, Meiqing ;
Li, Xibin .
INFORMATION SCIENCES, 2023, 630 :158-172
[58]   FedCAE: A New Federated Learning Framework for Edge-Cloud Collaboration Based Machine Fault Diagnosis [J].
Yu, Yaoxiang ;
Guo, Liang ;
Gao, Hongli ;
He, Yichen ;
You, Zhichao ;
Duan, Andongzhe .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (04) :4108-4119
[59]   A Novel Federated Learning Scheme for Generative Adversarial Networks [J].
Zhang, Jiaxin ;
Zhao, Liang ;
Yu, Keping ;
Min, Geyong ;
Al-Dubai, Ahmed Y. ;
Zomaya, Albert Y. .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) :3633-3649
[60]   A Robust Game-Theoretical Federated Learning Framework With Joint Differential Privacy [J].
Zhang, Lefeng ;
Zhu, Tianqing ;
Xiong, Ping ;
Zhou, Wanlei ;
Yu, Philip S. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (04) :3333-3346