Dynamic Mechanical Modulation of WS2 Monolayer by Standing Surface Acoustic Waves

被引:1
|
作者
Polimeno, Laura [1 ]
Di Renzo, Anna [1 ]
Rizzato, Silvia [1 ,2 ]
Mastria, Rosanna [1 ]
De Giorgi, Milena [1 ]
De Marco, Luisa [1 ]
Ballarini, Dario [1 ]
Gigli, Giuseppe [1 ]
Rizzo, Aurora [1 ]
Dominici, Lorenzo [1 ]
Maruccio, Giuseppe [1 ,2 ]
Wolff, Christian [3 ]
Mortensen, N. Asger [3 ,4 ]
Sanvitto, Daniele [1 ]
Todisco, Francesco [1 ,3 ]
机构
[1] CNR, Inst Nanotechnol, Nanotec, I-73100 Lecce, Italy
[2] Univ Salento, Dipartimento Matemat & Fis Ennio Giorgi, I-73100 Lecce, Italy
[3] Univ Southern Denmark, POLIMA Ctr Polariton Driven Light Matter Interact, DK-5230 Odense M, Denmark
[4] Univ Southern Denmark, Danish Inst Adv Study, DK-5230 Odense M, Denmark
来源
ACS PHOTONICS | 2024年 / 11卷 / 10期
基金
新加坡国家研究基金会;
关键词
transition metal dichalcogenide; surfaceacoustic waves; acoustic resonators; excitons; adhesion;
D O I
10.1021/acsphotonics.4c00821
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface acoustic waves (SAWs) propagating on piezoelectric materials carry large out-of-plane mechanical strain and strong in-plane electromagnetic fields, providing a fascinating hybrid platform for the manipulation of excitons in active media. The interaction of SAWs with two-dimensional (2D) semiconducting transition-metal dichalcogenide (TMD) monolayers has recently garnered significant attention due to their extreme sensitivity to strain and electromagnetic near-fields, resulting in exciton ionization in lithium niobate (LiNbO3) based delay lines. In this study, we demonstrate an innovative approach to manipulate the optomechanical properties of a tungsten disulfide (WS2) monolayer, based on the excitation of standing SAWs in an acoustic resonator defined on gallium arsenide (GaAs), a weak piezoelectric material. In contrast to previous reports on LiNbO3 delay lines, our platform exhibits a resonant enhancement of the monolayer's photoemission together with the imprinting of a discernible spatial structuring of the WS2 luminescence in a one-dimensional (1D) periodic pattern. By imaging a large monolayer flake driven at the resonator frequency, we demonstrate that this optical modulation arises from a periodic detachment of the monolayer from the substrate surface due to the robust mechanical oscillations induced by the standing SAW pattern in high quality factor resonators. Our work establishes SAW resonators as an alternative paradigm to locally and reversibly tuning the optical and structural properties of TMD monolayers at room temperature by micro/nanoscale control of mechanical fields. This approach holds substantial potential for applications in the field of optics and nanophotonics with tunable light-matter interactions.
引用
收藏
页码:4058 / 4064
页数:7
相关论文
共 50 条
  • [21] Transfer of monolayer TMD WS2 and Raman study of substrate effects
    Mlack, Jerome T.
    Das, Paul Masih
    Danda, Gopinath
    Chou, Yung-Chien
    Naylor, Carl H.
    Lin, Zhong
    Lopez, Nestor Perea
    Zhang, Tianyi
    Terrones, Mauricio
    Johnson, A. T. Charlie
    Drndic, Marija
    SCIENTIFIC REPORTS, 2017, 7 : 1 - 8
  • [22] Engineering Valley Polarization of Monolayer WS2: A Physical Doping Approach
    Feng, Shun
    Cong, Chunxiao
    Konabe, Satoru
    Zhang, Ding
    Shang, Jingzhi
    Chen, Yu
    Zou, Chenji
    Cao, Bingchen
    Wu, Lishu
    Peimyoo, Namphung
    Zhang, Baile
    Yu, Ting
    SMALL, 2019, 15 (12)
  • [23] Temperature dependence of optical properties of monolayer WS2 by spectroscopic ellipsometry
    Hoang Tung Nguyen
    Kim, Tae Jung
    Park, Han Gyeol
    Van Long Le
    Nguyen, Xuan Au
    Koo, Dohyoung
    Lee, Chul-Ho
    Cuong, Do Duc
    Hong, Soon Cheol
    Kim, Young Dong
    APPLIED SURFACE SCIENCE, 2020, 511
  • [24] Valley dynamics of intravalley and intervalley multiexcitonic states in monolayer WS2
    Fu, Jiyong
    Bezerra, Andre
    Qu, Fanyao
    PHYSICAL REVIEW B, 2018, 97 (11)
  • [25] Modulation of Surface Elastic Waves and Surface Acoustic Waves by Acoustic-Elastic Metamaterials
    Fu, Chang
    Ma, Tian-Xue
    CRYSTALS, 2024, 14 (11)
  • [26] DESIGN OPTIMIZATION OF A MICROGYROCSOPE ON STANDING SURFACE ACOUSTIC WAVES
    Lukyanov, D. P.
    Kukaev, A. S.
    Shevchenko, S. Yu.
    2017 24TH SAINT PETERSBURG INTERNATIONAL CONFERENCE ON INTEGRATED NAVIGATION SYSTEMS (ICINS), 2017,
  • [27] Sub-100 fs Formation of Dark Excitons in Monolayer WS2
    Kolesnichenko, Pavel V.
    Wittenbecher, Lukas
    Zhang, Qianhui
    Teh, Run Yan
    Babu, Chandni
    Fuhrer, Michael S.
    Mikkelsen, Anders
    Zigmantas, Donatas
    NANO LETTERS, 2024, 24 (46) : 14663 - 14670
  • [28] Phase-Engineered WS2 Monolayer Quantum Dots by Rhenium Doping
    Lee, Hoon Ju
    Choe, Myeonggi
    Yang, Weiguang
    Lee, Suk Woo
    Park, Young Jin
    Hwang, Hyuntae
    Chhowalla, Manish
    Lee, Zonghoon
    Shin, Hyeon Suk
    ACS NANO, 2023, 17 (24) : 25731 - 25738
  • [29] Ultrafast evolution of the complex dielectric function of monolayer WS2 after photoexcitation
    Calati, Stefano
    Li, Qiuyang
    Zhu, Xiaoyang
    Stahler, Julia
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (39) : 22640 - 22646
  • [30] Disentangling the effects of doping, strain and disorder in monolayer WS2 by optical spectroscopy
    Kolesnichenko, Pavel V.
    Zhang, Qianhui
    Yun, Tinghe
    Zheng, Changxi
    Fuhrer, Michael S.
    Davis, Jeffrey A.
    2D MATERIALS, 2020, 7 (02):