Orbit tomography in constants-of-motion phase-space

被引:8
|
作者
Rud, M. [1 ]
Moseev, D. [2 ]
Jaulmes, F. [3 ]
Bogar, K. [3 ]
Dong, Y. [4 ]
Hansen, P. C. [4 ]
Eriksson, J. [5 ]
Jaerleblad, H. [4 ]
Nocente, M. [6 ]
Prechel, G. [7 ]
Reman, B. C. G. [1 ]
Schmidt, B. S. [1 ]
Snicker, A. [8 ]
Stagner, L. [9 ]
Valentini, A. [1 ]
Salewski, M. [1 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] Max Planck Inst Plasma Phys, Wendelsteinstr 1, D-17491 Greifswald, Germany
[3] Czech Acad Sci, Inst Plasma Phys, Slovankou 1782-3, Prague 18200, Czech Republic
[4] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[5] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[6] Univ Milano Bicocca, Dept Phys, I-20126 Milan, Italy
[7] Univ Calif Irvine, Phys & Astron, Irvine, CA USA
[8] Tech Res Ctr Finland, VTT, Espoo, Finland
[9] united States AmericaGeneral Atom, united States Americ, Gen Atom, POB 85608, San Diego, CA 92121 USA
关键词
fast ions; diagnostics; tomography; orbits; constants of motion; TOKAMAK;
D O I
10.1088/1741-4326/ad4bf4
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Tomographic reconstructions of a 3D fast-ion constants-of-motion phase-space distribution function are computed by inverting synthetic signals based on projected velocities of the fast ions along the diagnostic lines of sight. A spectrum of projected velocities is a key element of the spectrum formation in fast-ion D-alpha spectroscopy, collective Thomson scattering, and gamma-ray and neutron emission spectroscopy, and it can hence serve as a proxy for any of these. The fast-ion distribution functions are parameterised by three constants of motion, the kinetic energy, the magnetic moment and the toroidal canonical angular momentum. The reconstructions are computed using both zeroth-order and first-order Tikhonov regularisation expressed in terms of Bayesian inference to allow uncertainty quantification. In addition to this, a discontinuity appears to be present in the solution across the trapped-passing boundary surface in the three-dimensional phase space due to a singularity in the Jacobian of the transformation from position and velocity space to phase space. A method to allow for this apparent discontinuity while simultaneously penalising large gradients in the solution is demonstrated. Finally, we use our new methods to optimise the diagnostic performance of a set of six fans of sightlines by finding where the detectors contribute most complementary diagnostic information for the future COMPASS-Upgrade tokamak.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Diffusion and turbulence in phase-space and formation of phase-space vortices
    Lobo, Allen
    Sayal, Vinod Kumar
    EUROPEAN PHYSICAL JOURNAL PLUS, 2025, 140 (02):
  • [22] Phase-Space Tomography of the truncated harmonic oscillator states.
    González, MC
    Ladera, CL
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 348 - 349
  • [23] Quantum tomography, phase-space observables and generalized Markov kernels
    Pellonpaa, Juha-Pekka
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (46)
  • [24] A SQUEEZED STATE HOLOMORPHIC PHASE-SPACE REPRESENTATION OF EQUATIONS OF MOTION
    GALETTI, D
    DAVEIGA, JS
    PHYSICA A, 1993, 195 (1-2): : 239 - 252
  • [25] Time-resolved phase-space tomography of an optomechanical cavity
    Suchoi, Oren
    Shlomi, Keren
    Ella, Lior
    Buks, Eyal
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [26] Phase-space tomography with a programmable Radon-Wigner display
    Camara, Alejandro
    Alieva, Tatiana
    Rodrigo, Jose A.
    Calvo, Maria L.
    OPTICS LETTERS, 2011, 36 (13) : 2441 - 2443
  • [27] Phase-space motion in parametric three-wave interaction
    Bandilla, A
    Drobny, G
    Jex, I
    OPTICS COMMUNICATIONS, 1996, 128 (4-6) : 353 - 362
  • [28] A PHASE-SPACE PARTICLES MOTION SCHEME FOR ELECTRON KINETIC SIMULATION
    MANKELEVICH, YA
    RAKHIMOV, AT
    SUETIN, NV
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 1991, 19 (03) : 520 - 524
  • [29] Optical phase-space reconstruction of mirror motion at the attometer level
    Briant, T
    Cohadon, PF
    Pinard, M
    Heidmann, A
    EUROPEAN PHYSICAL JOURNAL D, 2003, 22 (01): : 131 - 140
  • [30] Optical phase-space reconstruction of mirror motion at the attometer level
    T. Briant
    P.F. Cohadon
    M. Pinard
    A. Heidmann
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2003, 22 : 131 - 140